Abstract

Laser-induced breakdown spectroscopy (LIBS) was applied to nitroaromatic (NC) and polycyclic aromatic hydrocarbon (PAH) samples in ambient air to characterize their resultant emission. Compounds covering various surfaces were ablated by use of the second (532-nm) or the fourth (266-nm) harmonic of a nanosecond pulsed Nd:YAG laser. The emission consisted of spectral features related mostly to CN and C2 molecular fragments and to C, H, N, and O atomic fragments. The transitions of the molecular fragments correspond to the CN (B 2+-X 2+) violet system and the C2 (d 3Πg-a 3Πu) Swan system; the intensity of the former is higher in NCs than in PAHs. The intensity ratios between C2 and CN and between O and N correlate to the molecular structure, suggesting the possibility of distinguishing one chemical class from another and in optimum cases even identifying specific compounds by use of LIBS.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription