Abstract

Laser-induced breakdown spectroscopy (LIBS) was applied to nitroaromatic (NC) and polycyclic aromatic hydrocarbon (PAH) samples in ambient air to characterize their resultant emission. Compounds covering various surfaces were ablated by use of the second (532-nm) or the fourth (266-nm) harmonic of a nanosecond pulsed Nd:YAG laser. The emission consisted of spectral features related mostly to CN and C2 molecular fragments and to C, H, N, and O atomic fragments. The transitions of the molecular fragments correspond to the CN (B 2+-X 2+) violet system and the C2 (d 3Πg-a 3Πu) Swan system; the intensity of the former is higher in NCs than in PAHs. The intensity ratios between C2 and CN and between O and N correlate to the molecular structure, suggesting the possibility of distinguishing one chemical class from another and in optimum cases even identifying specific compounds by use of LIBS.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas: Physical, Chemical and Biological Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.
  2. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  3. I. Schechter, “Laser induced plasma spectroscopy. A review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
    [CrossRef]
  4. M. Corsi, V. Palleschi, E. Tognoni, eds., Preface to special issue on laser-induced plasma spectroscopy, Spectrochim. Acta B 56, 565–566 (2001).
  5. V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B 56, 807–820 (2001).
    [CrossRef]
  6. R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
    [CrossRef]
  7. B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
    [CrossRef]
  8. H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta B 53, 1815–1825 (1998).
    [CrossRef]
  9. C. K. Wiliamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
    [CrossRef]
  10. M. P. Nelson, W. C. Bell, M. L. McLester, M. L. Myrick, “Single-shot multiwavelength imaging of laser plumes,” Appl. Spectrosc. 52, 179–186 (1998).
    [CrossRef]
  11. D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–579 (1987).
    [CrossRef]
  12. H. Zhang, F.-Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
    [CrossRef]
  13. U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy” Spectrochim. Acta B 56, 839–850 (2001).
    [CrossRef]
  14. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
    [CrossRef]
  15. R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
    [CrossRef]
  16. L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
    [CrossRef]
  17. C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
    [CrossRef]
  18. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
  19. C. W. Ng, N. H. Cheung, “Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration,” Anal. Chem. 72, 247–250 (2000).
    [CrossRef] [PubMed]
  20. R. Barbini, F. Calao, R. Fantoni, A. Palucci, F. Capitell, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, S175–S178 (1999).
  21. R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
    [CrossRef]
  22. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
    [CrossRef]
  23. R. Salimbeni, R. Pini, S. Siano, “Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line diagnostics,” Spectrochim. Acta B 56, 877–885 (2001).
    [CrossRef]
  24. R. J. Locke, J. B. Morris, B. E. Forch, A. W. Miziolek, “Ultraviolet laser microplasma gas-chromatography detector detection of species—specific fragment emission,” Appl. Opt. 29, 4987–4992 (1990).
    [CrossRef] [PubMed]
  25. L. St-Onge, R. Sing, S. Bechard, M. Sbsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).
  26. M. Tran, Q. Sun, B. W. Smith, J. D. Winfordner, “Determination of F, Cl, and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
    [CrossRef]
  27. U.S. Environmental, Protection. Agency, http://www.epa.gov//ttn/atw/188polls.html .
  28. Y. B. Zel’dovich, Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966), p. 112.
  29. I. Kopp, R. Lindrenn, B. Rydh, Tables of Band Features of Diatomic Molecules in Wavelength Order (U. Stockholm Press, Stockholm, 1974).
  30. J. Luque, D. R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 1.42), Rep. MP 98-021 (SRI International, Menlo Park, Calif., 1998).
  31. C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
    [CrossRef]
  32. B. J. van der Meer, “Emission spectroscopy as a tool to detect decomposition products of laser irradiated explosives,” in Chemistry and Physics of Energetic Materials, S. N. Bulusu, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1990), pp. 653–683.
    [CrossRef]
  33. V. R. Bhardwaj, K. Vijayalaksmi, D. Mathur, “Dissociative ionization of benzene in intense laser fields of picosecond duration,” Phys. Rev. A. 59, 1392–1398 (1999).
    [CrossRef]
  34. National Institute of Standards and Technology Atomic Spectra Database ( http://physics.nist.gov/cgi-bin/AtData/main_asd) .

2001 (7)

M. Corsi, V. Palleschi, E. Tognoni, eds., Preface to special issue on laser-induced plasma spectroscopy, Spectrochim. Acta B 56, 565–566 (2001).

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B 56, 807–820 (2001).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy” Spectrochim. Acta B 56, 839–850 (2001).
[CrossRef]

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

R. Salimbeni, R. Pini, S. Siano, “Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line diagnostics,” Spectrochim. Acta B 56, 877–885 (2001).
[CrossRef]

M. Tran, Q. Sun, B. W. Smith, J. D. Winfordner, “Determination of F, Cl, and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
[CrossRef]

2000 (1)

C. W. Ng, N. H. Cheung, “Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration,” Anal. Chem. 72, 247–250 (2000).
[CrossRef] [PubMed]

1999 (5)

R. Barbini, F. Calao, R. Fantoni, A. Palucci, F. Capitell, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, S175–S178 (1999).

H. Zhang, F.-Y. Yueh, J. P. Singh, “Laser-induced breakdown spectrometry as a multimetal continuous-emission monitor,” Appl. Opt. 38, 1459–1466 (1999).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

L. St-Onge, R. Sing, S. Bechard, M. Sbsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

V. R. Bhardwaj, K. Vijayalaksmi, D. Mathur, “Dissociative ionization of benzene in intense laser fields of picosecond duration,” Phys. Rev. A. 59, 1392–1398 (1999).
[CrossRef]

1998 (7)

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
[CrossRef]

L. Dudragne, P. Adam, J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
[CrossRef]

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta B 53, 1815–1825 (1998).
[CrossRef]

C. K. Wiliamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

M. P. Nelson, W. C. Bell, M. L. McLester, M. L. Myrick, “Single-shot multiwavelength imaging of laser plumes,” Appl. Spectrosc. 52, 179–186 (1998).
[CrossRef]

1997 (3)

R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

I. Schechter, “Laser induced plasma spectroscopy. A review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
[CrossRef]

1996 (2)

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

1990 (1)

1987 (1)

Adam, P.

Amouroux, J.

Angel, S. M.

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Angelone, M.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
[CrossRef]

Barbini, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Calao, R. Fantoni, A. Palucci, F. Capitell, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, S175–S178 (1999).

R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
[CrossRef]

Bauer, H. E.

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta B 53, 1815–1825 (1998).
[CrossRef]

Bechard, S.

L. St-Onge, R. Sing, S. Bechard, M. Sbsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Bell, W. C.

Bhardwaj, V. R.

V. R. Bhardwaj, K. Vijayalaksmi, D. Mathur, “Dissociative ionization of benzene in intense laser fields of picosecond duration,” Phys. Rev. A. 59, 1392–1398 (1999).
[CrossRef]

Boulmer-Leborgne, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Bulatov, V.

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

Calao, F.

R. Barbini, F. Calao, R. Fantoni, A. Palucci, F. Capitell, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, S175–S178 (1999).

Capitell, F.

R. Barbini, F. Calao, R. Fantoni, A. Palucci, F. Capitell, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, S175–S178 (1999).

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Cheung, N. H.

C. W. Ng, N. H. Cheung, “Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration,” Anal. Chem. 72, 247–250 (2000).
[CrossRef] [PubMed]

Colao, F.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
[CrossRef]

Couris, S.

Cremers, D. A.

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–579 (1987).
[CrossRef]

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas: Physical, Chemical and Biological Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.

Crosley, D. R.

J. Luque, D. R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 1.42), Rep. MP 98-021 (SRI International, Menlo Park, Calif., 1998).

Daniel, R. G.

C. K. Wiliamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

Dudragne, L.

Fantoni, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Calao, R. Fantoni, A. Palucci, F. Capitell, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, S175–S178 (1999).

R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
[CrossRef]

Fink, H.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy” Spectrochim. Acta B 56, 839–850 (2001).
[CrossRef]

Forch, B. E.

Fotakis, C.

French, P. D.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Goode, S. R.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Haisch, C.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Harmon, R. S.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Hatziapostolou, A.

Hermann, J.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Kopp, I.

I. Kopp, R. Lindrenn, B. Rydh, Tables of Band Features of Diatomic Molecules in Wavelength Order (U. Stockholm Press, Stockholm, 1974).

Krasniker, R.

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

Krause, H.

Larrauri, E.

Lazic, V.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B 56, 807–820 (2001).
[CrossRef]

Leis, F.

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta B 53, 1815–1825 (1998).
[CrossRef]

Lindrenn, R.

I. Kopp, R. Lindrenn, B. Rydh, Tables of Band Features of Diatomic Molecules in Wavelength Order (U. Stockholm Press, Stockholm, 1974).

Liska, M.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Locke, R. J.

Luches, A.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Luque, J.

J. Luque, D. R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 1.42), Rep. MP 98-021 (SRI International, Menlo Park, Calif., 1998).

Marquardt, B. J.

B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Mathur, D.

V. R. Bhardwaj, K. Vijayalaksmi, D. Mathur, “Dissociative ionization of benzene in intense laser fields of picosecond duration,” Phys. Rev. A. 59, 1392–1398 (1999).
[CrossRef]

Matveev, O. I.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Mavromanolakis, A.

McLester, M. L.

McNesby, K. L.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

C. K. Wiliamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

Miguel, R.

Miziolek, A. W.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

C. K. Wiliamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

R. J. Locke, J. B. Morris, B. E. Forch, A. W. Miziolek, “Ultraviolet laser microplasma gas-chromatography detector detection of species—specific fragment emission,” Appl. Opt. 29, 4987–4992 (1990).
[CrossRef] [PubMed]

Monch, I.

Morris, G. W.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Morris, J. B.

Myrick, M. L.

Nelson, M. P.

Neuhauser, R. E.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy” Spectrochim. Acta B 56, 839–850 (2001).
[CrossRef]

Ng, C. W.

C. W. Ng, N. H. Cheung, “Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration,” Anal. Chem. 72, 247–250 (2000).
[CrossRef] [PubMed]

Niemax, K.

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta B 53, 1815–1825 (1998).
[CrossRef]

Niessner, R.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy” Spectrochim. Acta B 56, 839–850 (2001).
[CrossRef]

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Noll, R.

Omenetto, N.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Palucci, A.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B 56, 807–820 (2001).
[CrossRef]

R. Barbini, F. Calao, R. Fantoni, A. Palucci, F. Capitell, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, S175–S178 (1999).

R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
[CrossRef]

Panne, U.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy” Spectrochim. Acta B 56, 839–850 (2001).
[CrossRef]

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Perrone, A.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Pini, R.

R. Salimbeni, R. Pini, S. Siano, “Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line diagnostics,” Spectrochim. Acta B 56, 877–885 (2001).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas: Physical, Chemical and Biological Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.

Raizer, Y. P.

Y. B. Zel’dovich, Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966), p. 112.

Ribezzo, S.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Rydh, B.

I. Kopp, R. Lindrenn, B. Rydh, Tables of Band Features of Diatomic Molecules in Wavelength Order (U. Stockholm Press, Stockholm, 1974).

Salimbeni, R.

R. Salimbeni, R. Pini, S. Siano, “Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line diagnostics,” Spectrochim. Acta B 56, 877–885 (2001).
[CrossRef]

Samek, O.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Sattmann, R.

Sbsabi, M.

L. St-Onge, R. Sing, S. Bechard, M. Sbsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Schechter, I.

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

I. Schechter, “Laser induced plasma spectroscopy. A review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
[CrossRef]

Siano, S.

R. Salimbeni, R. Pini, S. Siano, “Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line diagnostics,” Spectrochim. Acta B 56, 877–885 (2001).
[CrossRef]

Sing, R.

L. St-Onge, R. Sing, S. Bechard, M. Sbsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Singh, J. P.

Smith, B. W.

M. Tran, Q. Sun, B. W. Smith, J. D. Winfordner, “Determination of F, Cl, and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

St-Onge, L.

L. St-Onge, R. Sing, S. Bechard, M. Sbsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

Stratis, D. N.

Sun, Q.

Telle, H. H.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

Theisen, M.

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy” Spectrochim. Acta B 56, 839–850 (2001).
[CrossRef]

Tran, M.

van der Meer, B. J.

B. J. van der Meer, “Emission spectroscopy as a tool to detect decomposition products of laser irradiated explosives,” in Chemistry and Physics of Energetic Materials, S. N. Bulusu, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1990), pp. 653–683.
[CrossRef]

vander Steen, H. J. L.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
[CrossRef]

Vijayalaksmi, K.

V. R. Bhardwaj, K. Vijayalaksmi, D. Mathur, “Dissociative ionization of benzene in intense laser fields of picosecond duration,” Phys. Rev. A. 59, 1392–1398 (1999).
[CrossRef]

Vivien, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Wainner, R. T.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Wiliamson, C. K.

C. K. Wiliamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Winfordner, J. D.

Yueh, F.-Y.

Zel’dovich, Y. B.

Y. B. Zel’dovich, Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966), p. 112.

Zhang, H.

Acta B (1)

M. Corsi, V. Palleschi, E. Tognoni, eds., Preface to special issue on laser-induced plasma spectroscopy, Spectrochim. Acta B 56, 565–566 (2001).

Anal. Chem. (3)

C. K. Wiliamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

C. W. Ng, N. H. Cheung, “Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: a feasibility demonstration,” Anal. Chem. 72, 247–250 (2000).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. A (3)

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).

L. St-Onge, R. Sing, S. Bechard, M. Sbsabi, “Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A 69, S913–S916 (1999).

R. Barbini, F. Calao, R. Fantoni, A. Palucci, F. Capitell, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, S175–S178 (1999).

Appl. Phys. B (1)

R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. vander Steen, M. Angelone, “Semi-quantitative time resolved LIBS measurements,” Appl. Phys. B 65, 101–107 (1997).
[CrossRef]

Appl. Spectrosc. (6)

Crit. Rev. Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Fresenius J. Anal. Chem. (1)

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

J. Phys. D (1)

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[CrossRef]

Phys. Rev. A. (1)

V. R. Bhardwaj, K. Vijayalaksmi, D. Mathur, “Dissociative ionization of benzene in intense laser fields of picosecond duration,” Phys. Rev. A. 59, 1392–1398 (1999).
[CrossRef]

Rev. Anal. Chem. (1)

I. Schechter, “Laser induced plasma spectroscopy. A review of recent advances,” Rev. Anal. Chem. 16, 173–298 (1997).
[CrossRef]

Spectrochim. Acta B (6)

V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B 56, 807–820 (2001).
[CrossRef]

H. E. Bauer, F. Leis, K. Niemax, “Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection,” Spectrochim. Acta B 53, 1815–1825 (1998).
[CrossRef]

U. Panne, R. E. Neuhauser, M. Theisen, H. Fink, R. Niessner, “Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy” Spectrochim. Acta B 56, 839–850 (2001).
[CrossRef]

R. Krasniker, V. Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation,” Spectrochim. Acta B 56, 609–618 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

R. Salimbeni, R. Pini, S. Siano, “Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line diagnostics,” Spectrochim. Acta B 56, 877–885 (2001).
[CrossRef]

Other (7)

U.S. Environmental, Protection. Agency, http://www.epa.gov//ttn/atw/188polls.html .

Y. B. Zel’dovich, Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966), p. 112.

I. Kopp, R. Lindrenn, B. Rydh, Tables of Band Features of Diatomic Molecules in Wavelength Order (U. Stockholm Press, Stockholm, 1974).

J. Luque, D. R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 1.42), Rep. MP 98-021 (SRI International, Menlo Park, Calif., 1998).

National Institute of Standards and Technology Atomic Spectra Database ( http://physics.nist.gov/cgi-bin/AtData/main_asd) .

B. J. van der Meer, “Emission spectroscopy as a tool to detect decomposition products of laser irradiated explosives,” in Chemistry and Physics of Energetic Materials, S. N. Bulusu, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1990), pp. 653–683.
[CrossRef]

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas: Physical, Chemical and Biological Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of the experimental setup for laser-induced breakdown spectroscopy: SHG, FHG, second- and fourth-harmonic generators, respectively; FO, fiber optic; DG, delay generator; PC, personal computer.

Fig. 2
Fig. 2

Temporal behavior of the emission of ablated DNT by the second harmonic of a Nd:YAG (532-nm) laser (pulse width, ∼5 ns; E = 2 mJ) focused approximately on the sample surface. These spectra were obtained at different delays following the laser pulse with a gate of 200 ns and a spectral resolution of 1 nm.

Fig. 3
Fig. 3

Characteristic emission spectra of various organic samples with different numbers of nitro groups, including DNT, nitrobenzene (NB), and toluene, normalized to the C2 emission. The samples were irradiated with the second harmonic (532 nm) of a Nd:YAG laser (pulse width, ∼5 ns; E = 2 mJ) focused approximately on the sample surface. These spectra were obtained at delays of 1.5 μs following the laser pulse with a gate of 500 ns and a spectral resolution of 1.0 nm. The assignment, based on Ref. 29, is given above the DNT trace. Inset, higher-resolution emission spectrum of CN B 2+-X 2+, Δ v = 0 resulting from ablated DNT with experimental and simulated spectra. The simulation was computed with the LIFBASE program30 and the standard molecular parameters available in the program.

Fig. 4
Fig. 4

Emission spectra of glucose, toluene, naphthalene, and anthracene with no, one, two, and three aromatic rings, respectively. The samples were irradiated with the second harmonic (532 nm) of a Nd:YAG laser (pulse width, ∼5 ns; E = 2 mJ) focused approximately on the sample surface. These spectra were obtained at delays of 1.5 μs following the laser pulse with a gate of 500 ns and spectral resolution of 1.0 nm. The assignment is similar to that given in Fig. 3.

Fig. 5
Fig. 5

C2 (d 3Π g -a 3Π u , Δ v = 0)/CN (B 2+-X2+, Δ v = 0) integrated line intensity ratios for (a) NCs and (b) PAHs. These ratios were obtained from the emission spectra of samples irradiated with the second harmonic (532 nm) of a Nd:YAG laser (pulse width, ∼5 ns; E = 2 mJ) focused approximately on the sample surface at delays of 1.5 μs following the laser pulse with a gate of 500 ns and spectral resolution of 1.0 nm. The chemical structures of the compounds studied are also shown.

Fig. 6
Fig. 6

Emission spectra of toluene and DNB samples irradiated with the second harmonic (532 nm) of a Nd:YAG laser (pulse width, ∼5 ns; E = 2 mJ) focused approximately on the sample surface. These spectra were obtained at delays of 50 ns following the laser pulse with a gate of 50 ns and a spectral resolution of 0.25 nm.

Fig. 7
Fig. 7

O/N integrated line intensity ratios for various aromatic compounds that contain different numbers of nitro groups. These ratios were obtained from the emission spectra of samples irradiated with the second harmonic (532 nm) of a Nd:YAG laser (pulse width, ∼5 ns; E = 2 mJ) focused approximately on the sample surface at delays of 50 ns following the laser pulse with a gate of 50 ns and spectral resolution of 0.25 nm. The chemical structures of the compounds studied compounds are given at the bottom of the figure.

Fig. 8
Fig. 8

(a) CN and C2 emission intensities for different masses of ablated naphthalene; (b) C2 (d 3Π g -a 3Π u , Δ v = 0)/CN (B 2+-X 2+, Δ v = 0) integrated line intensity ratios for various masses of naphthalene. These values were obtained from the emission spectra of samples irradiated with the second harmonic (532 nm) of a Nd:YAG laser (pulse width, ∼5 ns; E = 2 mJ) focused approximately on the sample surface at delays of 1.5 μs following the laser pulse with a gate of 500 ns and spectral resolution of 1.0 nm.

Tables (1)

Tables Icon

Table 1 Overlapping Transitions That Can Contribute to the O and N Lines at Wavelengths of 844.64 and 868 nma

Metrics