Abstract

We describe the design, fabrication, and testing of a monolithic interferometer consisting entirely of optically contacted fused-silica optical elements that are assembled, adjusted, and permanently bonded in place. The interferometer is part of a spatial heterodyne spectrometer (SHS) [SHIMMER (Spatial Heterodyne Imager for Mesospheric Radicals)] that will be used for near-ultraviolet high-spectral-resolution limb imaging of OH solar resonance fluorescence from low Earth orbit aboard the satellite STPSat-1 scheduled for launch in 2006. The stability of the monolith coupled with the relaxed tolerances on optical quality and alignment inherent to SHS make this new instrument extremely robust and especially attractive for applications in harsh environments.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere,” Appl. Opt. 41, 1343–1352 (2002).
    [CrossRef] [PubMed]
  2. R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, G. H. Mount, “The Middle Atmosphere High Resolution Spectrograph investigation,” J. Geophys. Res. 104D, 16327–16348 (1999).
    [CrossRef]
  3. J. M. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
    [CrossRef]
  4. J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray and Gamma-Ray Instrumentation of Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994).
    [CrossRef]
  5. W. A. Gault, S. Brown, A. Moise, D. Liang, G. Sellar, G. G. Sheperd, J. Wimperis, “ERWIN: an E-region wind interferometer,” Appl. Opt. 35, 2913–2922 (1996).
    [CrossRef] [PubMed]
  6. H. H. Karow, Fabrication Methods for Precision Optics (Wiley, New York, 1993).

2002

1999

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, G. H. Mount, “The Middle Atmosphere High Resolution Spectrograph investigation,” J. Geophys. Res. 104D, 16327–16348 (1999).
[CrossRef]

1996

1992

J. M. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

Brown, C. M.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, G. H. Mount, “The Middle Atmosphere High Resolution Spectrograph investigation,” J. Geophys. Res. 104D, 16327–16348 (1999).
[CrossRef]

Brown, S.

Cardon, J. G.

J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere,” Appl. Opt. 41, 1343–1352 (2002).
[CrossRef] [PubMed]

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, G. H. Mount, “The Middle Atmosphere High Resolution Spectrograph investigation,” J. Geophys. Res. 104D, 16327–16348 (1999).
[CrossRef]

Conway, R. R.

J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere,” Appl. Opt. 41, 1343–1352 (2002).
[CrossRef] [PubMed]

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, G. H. Mount, “The Middle Atmosphere High Resolution Spectrograph investigation,” J. Geophys. Res. 104D, 16327–16348 (1999).
[CrossRef]

Englert, C. R.

Gault, W. A.

Harlander, J. M.

J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere,” Appl. Opt. 41, 1343–1352 (2002).
[CrossRef] [PubMed]

J. M. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray and Gamma-Ray Instrumentation of Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994).
[CrossRef]

Jaehnig, K. P.

J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray and Gamma-Ray Instrumentation of Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994).
[CrossRef]

Karow, H. H.

H. H. Karow, Fabrication Methods for Precision Optics (Wiley, New York, 1993).

Liang, D.

Moise, A.

Mount, G. H.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, G. H. Mount, “The Middle Atmosphere High Resolution Spectrograph investigation,” J. Geophys. Res. 104D, 16327–16348 (1999).
[CrossRef]

Reynolds, R. J.

J. M. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray and Gamma-Ray Instrumentation of Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994).
[CrossRef]

Roesler, F. L.

J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere,” Appl. Opt. 41, 1343–1352 (2002).
[CrossRef] [PubMed]

J. M. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray and Gamma-Ray Instrumentation of Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994).
[CrossRef]

Sanders, W. T.

J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray and Gamma-Ray Instrumentation of Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994).
[CrossRef]

Sellar, G.

Seo, S. M.

J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray and Gamma-Ray Instrumentation of Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994).
[CrossRef]

Sheperd, G. G.

Stevens, M. H.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, G. H. Mount, “The Middle Atmosphere High Resolution Spectrograph investigation,” J. Geophys. Res. 104D, 16327–16348 (1999).
[CrossRef]

Tran, H. T.

J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray and Gamma-Ray Instrumentation of Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994).
[CrossRef]

Wimperis, J.

Zasadil, S. E.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, G. H. Mount, “The Middle Atmosphere High Resolution Spectrograph investigation,” J. Geophys. Res. 104D, 16327–16348 (1999).
[CrossRef]

Appl. Opt.

Astrophys. J.

J. M. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[CrossRef]

J. Geophys. Res.

R. R. Conway, M. H. Stevens, C. M. Brown, J. G. Cardon, S. E. Zasadil, G. H. Mount, “The Middle Atmosphere High Resolution Spectrograph investigation,” J. Geophys. Res. 104D, 16327–16348 (1999).
[CrossRef]

Other

J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray and Gamma-Ray Instrumentation of Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994).
[CrossRef]

H. H. Karow, Fabrication Methods for Precision Optics (Wiley, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the SHS configuration. For each wavelength in the incident wave front, two wave fronts exit the interferometer with a wavelength-dependent crossing angle between them. This produces a superposition of Fizeau fringes with wavelength-dependent spatial frequencies localized near the gratings and imaged on the detector. The image is the Fourier transform of the input spectrum about the heterodyne wavelength (the wavelength producing parallel output wave fronts). The prism angles are chosen so that, from a geometrical-optics point of view, the gratings appear coincident when viewed from the imaging detector. The Fourier-transform spectroscopy (FTS) detector location integrates the signal over the full aperture of the interferometer.

Fig. 3
Fig. 3

Scale drawing of the monolithic interferometer. See text for details.

Fig. 2
Fig. 2

Monolithic SHS interferometer. The beam splitter (the central hexagonal section) faces are 20 mm × 20 mm. Working outward in each arm the first elements are wedged spacers that mate the beam-splitter faces to the field-widening prisms. Parallel spacers mate the prisms to the gratings.

Fig. 4
Fig. 4

Laboratory setup. The monolithic interferometer is on the laboratory jacks near the center of the image.

Fig. 5
Fig. 5

MnNe fringe pattern. The horizontal direction is in the dispersion plane of the gratings.

Fig. 6
Fig. 6

MnNe spectrum. All the line positions were used to determine the Littrow wavelength and resolution; however, only the 11 brightest lines are labeled.

Fig. 7
Fig. 7

Zn emission line interferogram (λ = 307.59 nm).

Fig. 8
Fig. 8

Zn interferogram intensity slice. Note the high visibility of the fringes near the center of the interferogram where the path difference is zero.

Fig. 9
Fig. 9

Zn emission line spectrum. No apodization function, but zero filling was applied to the interferogram before transforming, which results in the ringing in the wings of the line.

Tables (1)

Tables Icon

Table 1 Monolithic Interferometer Design Parameters

Metrics