Abstract

Design and functional aspects of PANSPEC, a panoramic-imaging chemical vapor sensor (PANSPEC is an abbreviation for infrared panoramic-viewing spectroradiometer), were advanced and its optical system reoptimized accordingly. The PANSPEC model unites camera and fused solid-state interferometer and photopolarimeter subsystems. The camera is an eye of the open atmosphere that collects, collimates, and images ambient infrared radiance from a panoramic field of view (FOV). The passive interferometer rapidly measures an infrared-absorbing (or infrared-emitting) chemical cloud traversing the FOV by means of molecular vibrational spectroscopy. The active photopolarimeter system provides a laser beam beacon. This beam carries identification (feature spectra measured by the interferometer) and heading (detector pixels disclosing these feature spectra) information on the hazardous cloud through a binary encryption of Mueller matrix elements. Interferometer and photopolarimeter share a common configuration of photoelastic modulation optics. PANSPEC was optimized for minimum aberrations and maximum resolution of image. The optimized design was evaluated for tolerances in the shaping and mounting of the optical system, stray light, and ghost images at the focal plane given a modulation transfer function metric.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Carrieri, “Panoramic infrared-imaging spectroradiometer model with reverse phase-modulated beam broadcasting,” Appl. Opt. 36, 1952–1964 (1997).
    [CrossRef]
  2. T. N. Buican, “Feasibility study for the development of a high-speed Fourier transform infrared (FTIR) photoelastic modulator (PEM) based spectrometer,” Rep. TCN 95035 (U.S. Army Research Office Short Term Analytical Services, Research Triangle Park, N.C., 1997).
  3. A. H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy,” Appl. Opt. 38, 3759–3766 (1999).
    [CrossRef]
  4. W. A. Shurcliff, Polarized Light: Production and Use (Harvard University, Cambridge, Mass., 1962).
  5. F. Le Roy-Brehonnet, B. Le Jeune, P. Elies, J. Cariou, J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38 (1996).
    [CrossRef]
  6. E. M. Georgieva, G. T. Georgiev, “Method for studying the electro-optic effect of isotropic crystals,” Rev. Sci. Instrum. 64, 3206–3208 (1993).
    [CrossRef]
  7. J. M. Movilla, G. Piquero, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149, 230–234 (1998).
    [CrossRef]
  8. C. S. Brown, F. Muhammad, “The unified formalism for polarization optics: further developments,” in Polarization Analysis and Measurement II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE2265, 327–336 (1994).
    [CrossRef]
  9. A. H. Carrieri, J. R. Bottiger, D. J. Owens, E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550–6557 (1998).
    [CrossRef]
  10. A. H. Carrieri, J. R. Bottiger, D. J. Owens, C. E. Henry, J. O. Jensen, C. M. Herzinger, S. M. Haugland, K. E. Schmidt, “Mid infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Internal Rep. CRDEC-TR-318 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).
  11. A. H. Carrieri, P. I. Lim, “Neural network pattern recognition of thermal-signature spectra for chemical defense,” Appl. Opt. 34, 2623–2635 (1995).
    [CrossRef] [PubMed]
  12. J. W. Evans, “The birefringent filter,” J. Opt. Soc. Am. 39, 229–242 (1949).
    [CrossRef]
  13. T. N. Buican, Semiotic Engineering Associates Ltd. Co., Albuquerque N.M. (personal communication, 1997).
  14. ZEMAX Optical Design Program User’s Guide, Version 10.0, Focus Software, Incorporated, P.O. Box 18228, Tucson, Ariz. 85731-8228 (2001).
  15. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).

1999 (1)

1998 (2)

A. H. Carrieri, J. R. Bottiger, D. J. Owens, E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550–6557 (1998).
[CrossRef]

J. M. Movilla, G. Piquero, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149, 230–234 (1998).
[CrossRef]

1997 (1)

1996 (1)

F. Le Roy-Brehonnet, B. Le Jeune, P. Elies, J. Cariou, J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38 (1996).
[CrossRef]

1995 (1)

1993 (1)

E. M. Georgieva, G. T. Georgiev, “Method for studying the electro-optic effect of isotropic crystals,” Rev. Sci. Instrum. 64, 3206–3208 (1993).
[CrossRef]

1949 (1)

Bottiger, J. R.

A. H. Carrieri, J. R. Bottiger, D. J. Owens, E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550–6557 (1998).
[CrossRef]

A. H. Carrieri, J. R. Bottiger, D. J. Owens, C. E. Henry, J. O. Jensen, C. M. Herzinger, S. M. Haugland, K. E. Schmidt, “Mid infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Internal Rep. CRDEC-TR-318 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Brown, C. S.

C. S. Brown, F. Muhammad, “The unified formalism for polarization optics: further developments,” in Polarization Analysis and Measurement II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE2265, 327–336 (1994).
[CrossRef]

Buican, T. N.

T. N. Buican, “Feasibility study for the development of a high-speed Fourier transform infrared (FTIR) photoelastic modulator (PEM) based spectrometer,” Rep. TCN 95035 (U.S. Army Research Office Short Term Analytical Services, Research Triangle Park, N.C., 1997).

T. N. Buican, Semiotic Engineering Associates Ltd. Co., Albuquerque N.M. (personal communication, 1997).

Cariou, J.

F. Le Roy-Brehonnet, B. Le Jeune, P. Elies, J. Cariou, J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38 (1996).
[CrossRef]

Carrieri, A. H.

Elies, P.

F. Le Roy-Brehonnet, B. Le Jeune, P. Elies, J. Cariou, J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38 (1996).
[CrossRef]

Evans, J. W.

Georgiev, G. T.

E. M. Georgieva, G. T. Georgiev, “Method for studying the electro-optic effect of isotropic crystals,” Rev. Sci. Instrum. 64, 3206–3208 (1993).
[CrossRef]

Georgieva, E. M.

E. M. Georgieva, G. T. Georgiev, “Method for studying the electro-optic effect of isotropic crystals,” Rev. Sci. Instrum. 64, 3206–3208 (1993).
[CrossRef]

Haugland, S. M.

A. H. Carrieri, J. R. Bottiger, D. J. Owens, C. E. Henry, J. O. Jensen, C. M. Herzinger, S. M. Haugland, K. E. Schmidt, “Mid infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Internal Rep. CRDEC-TR-318 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Henry, C. E.

A. H. Carrieri, J. R. Bottiger, D. J. Owens, C. E. Henry, J. O. Jensen, C. M. Herzinger, S. M. Haugland, K. E. Schmidt, “Mid infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Internal Rep. CRDEC-TR-318 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Herzinger, C. M.

A. H. Carrieri, J. R. Bottiger, D. J. Owens, C. E. Henry, J. O. Jensen, C. M. Herzinger, S. M. Haugland, K. E. Schmidt, “Mid infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Internal Rep. CRDEC-TR-318 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Jensen, J. O.

A. H. Carrieri, J. R. Bottiger, D. J. Owens, C. E. Henry, J. O. Jensen, C. M. Herzinger, S. M. Haugland, K. E. Schmidt, “Mid infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Internal Rep. CRDEC-TR-318 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Le Jeune, B.

F. Le Roy-Brehonnet, B. Le Jeune, P. Elies, J. Cariou, J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38 (1996).
[CrossRef]

Le Roy-Brehonnet, F.

F. Le Roy-Brehonnet, B. Le Jeune, P. Elies, J. Cariou, J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38 (1996).
[CrossRef]

Lim, P. I.

Lotrian, J.

F. Le Roy-Brehonnet, B. Le Jeune, P. Elies, J. Cariou, J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38 (1996).
[CrossRef]

Martinez-Herrero, R.

J. M. Movilla, G. Piquero, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149, 230–234 (1998).
[CrossRef]

Mejias, P. M.

J. M. Movilla, G. Piquero, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149, 230–234 (1998).
[CrossRef]

Movilla, J. M.

J. M. Movilla, G. Piquero, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149, 230–234 (1998).
[CrossRef]

Muhammad, F.

C. S. Brown, F. Muhammad, “The unified formalism for polarization optics: further developments,” in Polarization Analysis and Measurement II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE2265, 327–336 (1994).
[CrossRef]

Owens, D. J.

A. H. Carrieri, J. R. Bottiger, D. J. Owens, E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550–6557 (1998).
[CrossRef]

A. H. Carrieri, J. R. Bottiger, D. J. Owens, C. E. Henry, J. O. Jensen, C. M. Herzinger, S. M. Haugland, K. E. Schmidt, “Mid infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Internal Rep. CRDEC-TR-318 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Piquero, G.

J. M. Movilla, G. Piquero, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149, 230–234 (1998).
[CrossRef]

Roese, E. S.

Schmidt, K. E.

A. H. Carrieri, J. R. Bottiger, D. J. Owens, C. E. Henry, J. O. Jensen, C. M. Herzinger, S. M. Haugland, K. E. Schmidt, “Mid infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Internal Rep. CRDEC-TR-318 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light: Production and Use (Harvard University, Cambridge, Mass., 1962).

Smith, W. J.

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

J. Phys. D (1)

F. Le Roy-Brehonnet, B. Le Jeune, P. Elies, J. Cariou, J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38 (1996).
[CrossRef]

Opt. Commun. (1)

J. M. Movilla, G. Piquero, R. Martinez-Herrero, P. M. Mejias, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149, 230–234 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

E. M. Georgieva, G. T. Georgiev, “Method for studying the electro-optic effect of isotropic crystals,” Rev. Sci. Instrum. 64, 3206–3208 (1993).
[CrossRef]

Other (7)

W. A. Shurcliff, Polarized Light: Production and Use (Harvard University, Cambridge, Mass., 1962).

C. S. Brown, F. Muhammad, “The unified formalism for polarization optics: further developments,” in Polarization Analysis and Measurement II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE2265, 327–336 (1994).
[CrossRef]

T. N. Buican, “Feasibility study for the development of a high-speed Fourier transform infrared (FTIR) photoelastic modulator (PEM) based spectrometer,” Rep. TCN 95035 (U.S. Army Research Office Short Term Analytical Services, Research Triangle Park, N.C., 1997).

A. H. Carrieri, J. R. Bottiger, D. J. Owens, C. E. Henry, J. O. Jensen, C. M. Herzinger, S. M. Haugland, K. E. Schmidt, “Mid infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Internal Rep. CRDEC-TR-318 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

T. N. Buican, Semiotic Engineering Associates Ltd. Co., Albuquerque N.M. (personal communication, 1997).

ZEMAX Optical Design Program User’s Guide, Version 10.0, Focus Software, Incorporated, P.O. Box 18228, Tucson, Ariz. 85731-8228 (2001).

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

PANSPEC in (a) passive interferometer and (b) active photopolarimeter modes of operation. HM, hyperboloid mirror; SM, spherical mirror; Ge, germanium shell; MT, photoelastic-modulated ZnSe crystal with transducer; ℳT, half-wave- and quarter-wave-plate sequencing of the ZnSe crystal with transducer; P, linear polarizer; L, lens; LA, infrared continuous-wave laser; B, beam expander; S, shutter; S′, shutter with mirrored face on slide. Subscripts reference the optics listed in Table 1.

Fig. 2
Fig. 2

Aberrations of an image at the FPA of PANSPEC as computed in zemax. The ordinate EY is displacement in the image ray y-component intercept from the chief ray intercept at ray field angles (0°, -40°), …, (0°, -70°) launched along the (vignetted) EP’s normalized horizontal and vertical axes: PY and PX, respectively. The vertical scale limits are ±13 μm, and the ray wavelengths span 9–11 μm. These plots are used to identify the types of aberration present in the image. Field curvature is the inward change of focus with pupil height and is illustrative of the linear sloped portions of the graph, whereas coma is the variation of magnification with pupil height and resembles the parabolic portion. Barrel (negative) distortion, the inward tilt of the image with the ray field angle, is the other significant third-order aberration. It is comparable in this revised PANSPEC model to the original model calculations as shown in Fig. 9 of Ref. 1. (See Refs. 14,15 for a discussion and derivation of the wave-front expansion coefficients that mathematically define these aberrations.)

Fig. 3
Fig. 3

NSRT stray-light analysis of PANSPEC’s core interferometer and imager optics. The top graphic illustrates five random ray paths traced through the optical system from the (far-left) disk-collimated ray source. TIR in a polarizer optic and a single scattering event from the cylinder wall are shown in this example. The bottom-left graphic maps 106 random rays traced through the optical system from the source to the FPA. The bottom-right graphic maps the same quantity of rays with an opaque disk object that eclipses the source such that all direct ray paths to the FPA are blocked. The cylinder inner wall is a Lambertian scatterer of all rays incident to it. This clearly illustrates that an insignificant quantity of stray light reaches the sensor’s FPA.

Tables (6)

Tables Icon

Table 1 Surface Data Summary of the Optimized PANSPEC Sensor Optical Design

Tables Icon

Table 2 Vignetting Parameters of the Optimized PANSPEC Sensor Optical Design

Tables Icon

Table 3 Mueller Matrices ℛ for Half-Wave- and Quarter-Wave Plate States of Optic ℳ19–20 of Fig. 1(b)a

Tables Icon

Table 4 Mueller Matrices ℛ for Half-Wave- and Quarter-Wave-Plate States of Optic ℳ19–20 of Fig. 1(b)a

Tables Icon

Table 5 Mueller Matrices ℛ for Half-Wave- and Quarter-Wave-Plate States of Optic ℳ19–20 of Fig. 1(b)a

Tables Icon

Table 6 Mueller Matrices ℛ for Half-Wave- and Quarter-Wave-Plate States of Optic ℳ19–20 of Fig. 1(b)a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ψ=P1314M1718M2122P2425,
1920λ/2=10000cos2 2α-sin2 2α2 cos 2α sin 2α002 cos 2α sin 2αsin2 2α-cos2 2α0000-1,
1920λ/4=10000cos2 2αcos 2α sin 2α-sin 2α0cos 2α sin 2αsin2 2αcos 2α0sin 2α-cos 2α0,
st=Ψsi.
If/I0=Ψ1,1+Iω1, ω2,
Iω1, ω2=Ψi,jn=0,m=02 Cn,m cos±nω2t±mω1t+n=3,m=3 Θhcosnω1t, mω2t.

Metrics