Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft contains spectral bands that allow retrieval of solar-induced phytoplankton chlorophyll fluorescence emission radiance. Concurrent airborne laser-induced (and water-Raman normalized) phytoplankton chlorophyll fluorescence data is used to successfully validate the MODIS chlorophyll fluorescence line height (FLH) retrievals within Gulf Stream, continental slope, shelf, and coastal waters of the Middle Atlantic Bight portion of the western North Atlantic Ocean for 11 March 2002. Over the entire ∼480-km flight line a correlation coefficient of r 2 = 0.85 results from regression of the airborne laser data against the MODIS FLH. It is also shown that the MODIS FLH product is not influenced by blue-absorbing chromophoric dissolved organic matter absorption. These regional results strongly suggest that the FLH methodology is equally valid within similar oceanic provinces of the global oceans.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll-alpha fluorescence,” J. Geophy. Res. 82, 3487–3493 (1977).
    [CrossRef]
  2. J. F. R. Gower, “Observations of in situ fluorescence of chlorophyll a in Saanich Inlet,” Boundary-Layer Meteorol. 18, 235–245 (1980).
    [CrossRef]
  3. J. F. R. Gower, G. A. Borstad, “Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer,” Int. J. Remote Sens. 11, 313–320 (1990).
    [CrossRef]
  4. R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
    [CrossRef]
  5. J. F. R. Gower, R. Doerffer, G. A. Borstad., “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
    [CrossRef]
  6. A. Bricaud, A. Morel, V. Barale, “MERIS potential for ocean colour studies in the open ocean,” Int. J. Remote Sens. 20, 1757–1769 (1999).
    [CrossRef]
  7. J. L. Bezy, S. Delwart, M. Rast, “MERIS-A new generation of ocean-colour sensor onboard Envisat,” ESA Bull. 103, 48–56 (2000).
  8. A. M. Matthews, A. G. Duncan, R. G. Davison, “An assessment of validation techniques for estimating chlorophyll-alpha concentration from airborne multispectral imagery,” Inter. J. Remote Sens. 22, 429–447 (2001).
    [CrossRef]
  9. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
    [CrossRef]
  10. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
    [CrossRef]
  11. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31140 (2001).
    [CrossRef]
  12. C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, C. R. Schirtzinger, “Next-generation NASA airborne oceanographic lidar system,” Appl. Opt. 40, 336–342 (2001).
    [CrossRef]
  13. W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
    [CrossRef]
  14. H. R. Gordon, “Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm,” Appl. Opt. 18, 1161–1166 (1979).
    [CrossRef] [PubMed]
  15. B. J. Topliss, “Optical measurements in the Sargasso Sea: solar-stimulated chlorophyll fluorescence,” Oceanolgy Acta 8, 263–270 (1985).
  16. B. J. Topliss, T. Platt, “Passive fluorescence and photosynthesis in the ocean: implications for remote sensing,” Deep-Sea Res. 33, 849–864 (1986).
    [CrossRef]
  17. F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence measurements,” Appl. Opt. 37, 4744–4749 (1998).
    [CrossRef]
  18. F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
    [CrossRef]
  19. F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
    [CrossRef] [PubMed]

2001 (3)

A. M. Matthews, A. G. Duncan, R. G. Davison, “An assessment of validation techniques for estimating chlorophyll-alpha concentration from airborne multispectral imagery,” Inter. J. Remote Sens. 22, 429–447 (2001).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31140 (2001).
[CrossRef]

C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, C. R. Schirtzinger, “Next-generation NASA airborne oceanographic lidar system,” Appl. Opt. 40, 336–342 (2001).
[CrossRef]

2000 (1)

J. L. Bezy, S. Delwart, M. Rast, “MERIS-A new generation of ocean-colour sensor onboard Envisat,” ESA Bull. 103, 48–56 (2000).

1999 (4)

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

J. F. R. Gower, R. Doerffer, G. A. Borstad., “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

A. Bricaud, A. Morel, V. Barale, “MERIS potential for ocean colour studies in the open ocean,” Int. J. Remote Sens. 20, 1757–1769 (1999).
[CrossRef]

1998 (2)

F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence measurements,” Appl. Opt. 37, 4744–4749 (1998).
[CrossRef]

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

1996 (1)

R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

1995 (1)

1993 (1)

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

1990 (1)

J. F. R. Gower, G. A. Borstad, “Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer,” Int. J. Remote Sens. 11, 313–320 (1990).
[CrossRef]

1986 (1)

B. J. Topliss, T. Platt, “Passive fluorescence and photosynthesis in the ocean: implications for remote sensing,” Deep-Sea Res. 33, 849–864 (1986).
[CrossRef]

1985 (1)

B. J. Topliss, “Optical measurements in the Sargasso Sea: solar-stimulated chlorophyll fluorescence,” Oceanolgy Acta 8, 263–270 (1985).

1980 (1)

J. F. R. Gower, “Observations of in situ fluorescence of chlorophyll a in Saanich Inlet,” Boundary-Layer Meteorol. 18, 235–245 (1980).
[CrossRef]

1979 (1)

1977 (1)

R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll-alpha fluorescence,” J. Geophy. Res. 82, 3487–3493 (1977).
[CrossRef]

Abbott, M.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Abbott, M. R.

R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

Balch, W.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Barale, V.

A. Bricaud, A. Morel, V. Barale, “MERIS potential for ocean colour studies in the open ocean,” Int. J. Remote Sens. 20, 1757–1769 (1999).
[CrossRef]

Barton, I.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Bezy, J. L.

J. L. Bezy, S. Delwart, M. Rast, “MERIS-A new generation of ocean-colour sensor onboard Envisat,” ESA Bull. 103, 48–56 (2000).

Blough, N. V.

F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Borstad, G. A.

J. F. R. Gower, R. Doerffer, G. A. Borstad., “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

J. F. R. Gower, G. A. Borstad, “Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer,” Int. J. Remote Sens. 11, 313–320 (1990).
[CrossRef]

Bricaud, A.

A. Bricaud, A. Morel, V. Barale, “MERIS potential for ocean colour studies in the open ocean,” Int. J. Remote Sens. 20, 1757–1769 (1999).
[CrossRef]

Brown, O.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Campbell, J.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Carder, K.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Clark, D.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Davison, R. G.

A. M. Matthews, A. G. Duncan, R. G. Davison, “An assessment of validation techniques for estimating chlorophyll-alpha concentration from airborne multispectral imagery,” Inter. J. Remote Sens. 22, 429–447 (2001).
[CrossRef]

Delwart, S.

J. L. Bezy, S. Delwart, M. Rast, “MERIS-A new generation of ocean-colour sensor onboard Envisat,” ESA Bull. 103, 48–56 (2000).

Doerffer, R.

J. F. R. Gower, R. Doerffer, G. A. Borstad., “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

Duncan, A. G.

A. M. Matthews, A. G. Duncan, R. G. Davison, “An assessment of validation techniques for estimating chlorophyll-alpha concentration from airborne multispectral imagery,” Inter. J. Remote Sens. 22, 429–447 (2001).
[CrossRef]

Esaias, W.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Evans, R.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Gordon, H.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Gordon, H. R.

Gower, J. F. R.

J. F. R. Gower, R. Doerffer, G. A. Borstad., “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

J. F. R. Gower, G. A. Borstad, “Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer,” Int. J. Remote Sens. 11, 313–320 (1990).
[CrossRef]

J. F. R. Gower, “Observations of in situ fluorescence of chlorophyll a in Saanich Inlet,” Boundary-Layer Meteorol. 18, 235–245 (1980).
[CrossRef]

R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll-alpha fluorescence,” J. Geophy. Res. 82, 3487–3493 (1977).
[CrossRef]

Hoge, F.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Hoge, F. E.

C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, C. R. Schirtzinger, “Next-generation NASA airborne oceanographic lidar system,” Appl. Opt. 40, 336–342 (2001).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31140 (2001).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence measurements,” Appl. Opt. 37, 4744–4749 (1998).
[CrossRef]

F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Kana, T. M.

Letelier, R.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Letelier, R. M.

R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

Lyon, P. E.

Matthews, A. M.

A. M. Matthews, A. G. Duncan, R. G. Davison, “An assessment of validation techniques for estimating chlorophyll-alpha concentration from airborne multispectral imagery,” Inter. J. Remote Sens. 22, 429–447 (2001).
[CrossRef]

Minnett, P.

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Morel, A.

A. Bricaud, A. Morel, V. Barale, “MERIS potential for ocean colour studies in the open ocean,” Int. J. Remote Sens. 20, 1757–1769 (1999).
[CrossRef]

Neville, R. A.

R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll-alpha fluorescence,” J. Geophy. Res. 82, 3487–3493 (1977).
[CrossRef]

Platt, T.

B. J. Topliss, T. Platt, “Passive fluorescence and photosynthesis in the ocean: implications for remote sensing,” Deep-Sea Res. 33, 849–864 (1986).
[CrossRef]

Rast, M.

J. L. Bezy, S. Delwart, M. Rast, “MERIS-A new generation of ocean-colour sensor onboard Envisat,” ESA Bull. 103, 48–56 (2000).

Schirtzinger, C. R.

Swift, R. N.

Topliss, B. J.

B. J. Topliss, T. Platt, “Passive fluorescence and photosynthesis in the ocean: implications for remote sensing,” Deep-Sea Res. 33, 849–864 (1986).
[CrossRef]

B. J. Topliss, “Optical measurements in the Sargasso Sea: solar-stimulated chlorophyll fluorescence,” Oceanolgy Acta 8, 263–270 (1985).

Vodacek, A.

F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Wright, C. W.

Yungel, J. K.

Yungel, J. Y.

Appl. Opt. (6)

Boundary-Layer Meteorol. (1)

J. F. R. Gower, “Observations of in situ fluorescence of chlorophyll a in Saanich Inlet,” Boundary-Layer Meteorol. 18, 235–245 (1980).
[CrossRef]

Deep-Sea Res. (1)

B. J. Topliss, T. Platt, “Passive fluorescence and photosynthesis in the ocean: implications for remote sensing,” Deep-Sea Res. 33, 849–864 (1986).
[CrossRef]

ESA Bull. (1)

J. L. Bezy, S. Delwart, M. Rast, “MERIS-A new generation of ocean-colour sensor onboard Envisat,” ESA Bull. 103, 48–56 (2000).

IEEE Trans. Geosci. Remote Sens. (1)

W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).
[CrossRef]

Int. J. Remote Sens. (3)

J. F. R. Gower, G. A. Borstad, “Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer,” Int. J. Remote Sens. 11, 313–320 (1990).
[CrossRef]

J. F. R. Gower, R. Doerffer, G. A. Borstad., “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999).
[CrossRef]

A. Bricaud, A. Morel, V. Barale, “MERIS potential for ocean colour studies in the open ocean,” Int. J. Remote Sens. 20, 1757–1769 (1999).
[CrossRef]

Inter. J. Remote Sens. (1)

A. M. Matthews, A. G. Duncan, R. G. Davison, “An assessment of validation techniques for estimating chlorophyll-alpha concentration from airborne multispectral imagery,” Inter. J. Remote Sens. 22, 429–447 (2001).
[CrossRef]

J. Geophy. Res. (1)

R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll-alpha fluorescence,” J. Geophy. Res. 82, 3487–3493 (1977).
[CrossRef]

J. Geophys. Res. (1)

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31140 (2001).
[CrossRef]

Limnol. Oceanogr. (1)

F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Oceanolgy Acta (1)

B. J. Topliss, “Optical measurements in the Sargasso Sea: solar-stimulated chlorophyll fluorescence,” Oceanolgy Acta 8, 263–270 (1985).

Remote Sens. Environ. (1)

R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the FLH algorithm. The relative transmittance of MODIS bands 13, 14, and 15 are labeled L13, L14, L15. The baseline for FLH measurement is established by a straight line between the radiance observed in bands 13 and 15. FLH is the radiance within band 14 that is above the baseline value. An example of FLH for a chlorophyll concentration of 10 mg/m3 is illustrated. The fluorescence per unit chlorophyll is assumed to be 0.05 W/m2/μm/sr per mg chlorophyll.

Fig. 2
Fig. 2

Terra-MODIS fluorescence line height image of the Middle Atlantic Bight portion of the western North Atlantic Ocean for 11 March 2002. The airborne lidar occupied the northerly Outbound flight line as the satellite passed overhead. The annoying MODIS instrument artifact called “striping” is still under study but does not severely hinder the validation results presented herein. The flight lines were designed to traverse four distinct water masses: coastal, shelf, slope, and Gulf Stream.

Fig. 3
Fig. 3

MODIS chlorophyll fluorescence line height extracted from the image in Fig. 2 along the entire outbound and inbound flight track lines. The airborne laser-induced (and water Raman-normalized) chlorophyll fluorescence is also plotted for direct comparison. The regression of the MODIS FLH and airborne laser chlorophyll fluorescence in the rightmost plots yields a correlation coefficient of r 2 = 0.85.

Fig. 4
Fig. 4

Performance of the Terra-MODIS FLH algorithm in highly absorbing CDOM-laden waters. The CDOM absorption coefficient at 412 nm is derived from the lidar CDOM fluorescence/water Raman ratio.19 The CDOM absorption coefficient at ∼683 nm is ∼1% of the 412-nm value and produces no discernible influence on the FLH retrievals even in the coastal region (see 460–470 Km along-track distance locations).

Metrics