Abstract

Two semianalytical remote-sensing reflectance models were evaluated and validated by use of bio-optical data collected in the Beaufort and Chukchi seas. Both models were efficient at retrieving chlorophyll concentration, phytoplankton absorption coefficients, and particulate backscattering coefficients. In contrast, they were not accurate in predicting an absorption coefficient for colored dissolved organic matter plus nonpigmented particulates. The poor model performance is attributed to the high variability in the concentrations of these colored materials. A chlorophyll-dependent reflectance model was also assessed, and it proved to be highly successful in reproducing measured reflectance spectra. A four-component, case 2 model with mean absorption spectra for phytoplankton, soluble materials, and nonpigmented particulates was employed in Hydrolight radiative-transfer model simulations. The remote-sensing reflectance spectra simulated in the radiative-transfer model were in excellent agreement with field data. The similarity between the model and the measurements confirms the accuracy of the underlying bio-optical relationships and underscores the utility of modeling for better understanding of the variability of ocean color observations. The latest SeaWiFS algorithm (OC4V4) overestimated chlorophyll by ∼1.5 fold across most of the observed range of biomass (0.07–9 mg chlorophyll m-3). Regionally tuned algorithms explained >93% of the variability in the surface chlorophyll concentration.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Retrieval of chlorophyll from remote-sensing reflectance in the China seas

Ming-Xia He, Zhi-Shen Liu, Ke-Ping Du, Li-Ping Li, Rui Chen, Kendall L. Carder, and Zhong-Ping Lee
Appl. Opt. 39(15) 2467-2474 (2000)

Evaluation of a reflectance model used in the SeaWiFS ocean color algorithm: implications for chlorophyll concentration retrievals

Banghua Yan, Knut Stamnes, Mitsuhiro Toratani, Wei Li, and Jakob J. Stamnes
Appl. Opt. 41(30) 6243-6259 (2002)

Inversion of oceanic constituents in case I and II waters with genetic programming algorithms

Malik Chami and Denis Robilliard
Appl. Opt. 41(30) 6260-6275 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription