Abstract

We investigated the effects of rapid thermal annealing (RTA)-induced cracks on the diode performance fabricated with GaAs-AlGaAs microstructures. These effects were examined and characterized after quantum-well intermixing within an epitaxial structure capped by either SiO2 or SrF2 layers. The results show clearly that the density of surface cracks strongly depends on the atomic interdiffusion between the well and the barrier layers and on the quality of the dielectric caps as well. Moreover, surface-crack correlation with the RTA process and dielectric deposition parameters, and the cracking effects on diode performance were observed and analyzed in detail. The results demonstrate that diode characteristics can be greatly improved by good surface morphology. Most importantly, we explored an effective way of reducing the density of RTA-induced cracks for the dielectrics grown by plasma-enhanced chemical vapor deposition, which was beneficial for dielectric-cap quantum-well disordering.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
    [CrossRef]
  2. E. S. Koteles, B. Elman, P. Melman, J. Y. Chi, C. A. Armiento, “Quantum well shape modification using vacancy generation and rapid thermal annealing,” Opt. Quantum Electron. 23, S779–S787 (1991).
    [CrossRef]
  3. J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000).
    [CrossRef]
  4. J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
    [CrossRef]
  5. T. Hirata, M. Maeda, M. Suehiro, H. Hosomatsu, “Fabrication and characteristics of GaAs-AlGaAs tunable laser diodes with DBR and phase-control sections integrated by compositional disordering of a quantum well,” IEEE J. Quantum Electron. 27, 1609–1615 (1991).
    [CrossRef]
  6. H. Ribot, K. W. Lee, R. J. Simes, R. H. Yan, L. A. Coldren, “Disordering of GaAs/AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator,” Appl. Phys. Lett. 55, 672–674 (1989).
    [CrossRef]
  7. H. H. Yee, S. G. Ayling, R. M. De La Rue, B. Vogele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
    [CrossRef]
  8. J. Ralston, G. W. Wicks, L. F. Eastman, B. C. DeCooman, C. B. Carter, “Defect structure and intermixing of ion-implanted AlxGa1–xAs-GaAs superlattices,” J. Appl. Phys. 59, 120–123 (1986).
    [CrossRef]
  9. I. Gontijo, T. Krauss, J. H. Marsh, R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 30, 1189–1195 (1994).
    [CrossRef]
  10. K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992).
  11. I. Harrison, “Ga-Al interdiffusion in intrinsic GaAs–AlAs superlattices,” in Properties of GaAs, Electronic Materials Information Service Datareview Series, No. 2, 2nd ed. (Inspec. IEE, London, 1990).
  12. B. S. Ooi, Phosistor Technologies Inc., Livermore, Calif. (personal communication, 1997).
  13. P. M. Petroff, R. C. Miller, A. C. Gossard, W. Wiegmann, “Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 44, 217–219 (1984).
    [CrossRef]
  14. E. Morita, J. Kosahara, S. Kawado, “Transmission electron microscopic observation of microdefects in Zn+-implanted GaAs,” Jpn. J. Appl. Phys. 24, 1274–1281 (1985).
    [CrossRef]
  15. H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Sec. 7–7.
  16. C. H. Henry, R. A. Logan, F. R. Merritt, “The effect of surface recombination on current in AlxGa1–xAs heterojunctions,” J. Appl. Phys. 49, 3530–3542 (1978).
    [CrossRef]
  17. P. D. Wright, W. B. Joyce, D. C. Craft, “Electrical derivative characteristics of InGaAsP buried heterostructure lasers,” J. Appl. Phys. 53, 1364–1372 (1982).
    [CrossRef]
  18. E. V. K. Rao, A. Hamoudi, Ph. Krauz, M. Juhel, H. Thibierge, “New encapsulant source for III–V quantum well disordering,” Appl. Phys. Lett. 66, 472–474 (1995).
    [CrossRef]
  19. W. R. Runyan, K. E. Bean, Semiconductor Integrated Circuit Processing Technology (Addison-Wesley, Reading, Mass., 1990), Sec. 4-6.

2000

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

1996

H. H. Yee, S. G. Ayling, R. M. De La Rue, B. Vogele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

1995

E. V. K. Rao, A. Hamoudi, Ph. Krauz, M. Juhel, H. Thibierge, “New encapsulant source for III–V quantum well disordering,” Appl. Phys. Lett. 66, 472–474 (1995).
[CrossRef]

1994

I. Gontijo, T. Krauss, J. H. Marsh, R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 30, 1189–1195 (1994).
[CrossRef]

1991

T. Hirata, M. Maeda, M. Suehiro, H. Hosomatsu, “Fabrication and characteristics of GaAs-AlGaAs tunable laser diodes with DBR and phase-control sections integrated by compositional disordering of a quantum well,” IEEE J. Quantum Electron. 27, 1609–1615 (1991).
[CrossRef]

E. S. Koteles, B. Elman, P. Melman, J. Y. Chi, C. A. Armiento, “Quantum well shape modification using vacancy generation and rapid thermal annealing,” Opt. Quantum Electron. 23, S779–S787 (1991).
[CrossRef]

1990

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

1989

H. Ribot, K. W. Lee, R. J. Simes, R. H. Yan, L. A. Coldren, “Disordering of GaAs/AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator,” Appl. Phys. Lett. 55, 672–674 (1989).
[CrossRef]

1988

D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
[CrossRef]

1986

J. Ralston, G. W. Wicks, L. F. Eastman, B. C. DeCooman, C. B. Carter, “Defect structure and intermixing of ion-implanted AlxGa1–xAs-GaAs superlattices,” J. Appl. Phys. 59, 120–123 (1986).
[CrossRef]

1985

E. Morita, J. Kosahara, S. Kawado, “Transmission electron microscopic observation of microdefects in Zn+-implanted GaAs,” Jpn. J. Appl. Phys. 24, 1274–1281 (1985).
[CrossRef]

1984

P. M. Petroff, R. C. Miller, A. C. Gossard, W. Wiegmann, “Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 44, 217–219 (1984).
[CrossRef]

1982

P. D. Wright, W. B. Joyce, D. C. Craft, “Electrical derivative characteristics of InGaAsP buried heterostructure lasers,” J. Appl. Phys. 53, 1364–1372 (1982).
[CrossRef]

1978

C. H. Henry, R. A. Logan, F. R. Merritt, “The effect of surface recombination on current in AlxGa1–xAs heterojunctions,” J. Appl. Phys. 49, 3530–3542 (1978).
[CrossRef]

Andreadakis, N. C.

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

Armiento, C. A.

E. S. Koteles, B. Elman, P. Melman, J. Y. Chi, C. A. Armiento, “Quantum well shape modification using vacancy generation and rapid thermal annealing,” Opt. Quantum Electron. 23, S779–S787 (1991).
[CrossRef]

Ayling, S. G.

H. H. Yee, S. G. Ayling, R. M. De La Rue, B. Vogele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

Baker, J. E.

D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
[CrossRef]

Bean, K. E.

W. R. Runyan, K. E. Bean, Semiconductor Integrated Circuit Processing Technology (Addison-Wesley, Reading, Mass., 1990), Sec. 4-6.

Carter, C. B.

J. Ralston, G. W. Wicks, L. F. Eastman, B. C. DeCooman, C. B. Carter, “Defect structure and intermixing of ion-implanted AlxGa1–xAs-GaAs superlattices,” J. Appl. Phys. 59, 120–123 (1986).
[CrossRef]

Casey, H. C.

H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Sec. 7–7.

Chi, J. Y.

E. S. Koteles, B. Elman, P. Melman, J. Y. Chi, C. A. Armiento, “Quantum well shape modification using vacancy generation and rapid thermal annealing,” Opt. Quantum Electron. 23, S779–S787 (1991).
[CrossRef]

Chua, S. J.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Colas, E.

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

Coldren, L. A.

H. Ribot, K. W. Lee, R. J. Simes, R. H. Yan, L. A. Coldren, “Disordering of GaAs/AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator,” Appl. Phys. Lett. 55, 672–674 (1989).
[CrossRef]

Craft, D. C.

P. D. Wright, W. B. Joyce, D. C. Craft, “Electrical derivative characteristics of InGaAsP buried heterostructure lasers,” J. Appl. Phys. 53, 1364–1372 (1982).
[CrossRef]

Dallesasse, J. M.

D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
[CrossRef]

De La Rue, R. M.

H. H. Yee, S. G. Ayling, R. M. De La Rue, B. Vogele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

I. Gontijo, T. Krauss, J. H. Marsh, R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 30, 1189–1195 (1994).
[CrossRef]

DeCooman, B. C.

J. Ralston, G. W. Wicks, L. F. Eastman, B. C. DeCooman, C. B. Carter, “Defect structure and intermixing of ion-implanted AlxGa1–xAs-GaAs superlattices,” J. Appl. Phys. 59, 120–123 (1986).
[CrossRef]

Deppe, D. G.

D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
[CrossRef]

Eastman, L. F.

J. Ralston, G. W. Wicks, L. F. Eastman, B. C. DeCooman, C. B. Carter, “Defect structure and intermixing of ion-implanted AlxGa1–xAs-GaAs superlattices,” J. Appl. Phys. 59, 120–123 (1986).
[CrossRef]

Elman, B.

E. S. Koteles, B. Elman, P. Melman, J. Y. Chi, C. A. Armiento, “Quantum well shape modification using vacancy generation and rapid thermal annealing,” Opt. Quantum Electron. 23, S779–S787 (1991).
[CrossRef]

Feldman, L. C.

K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992).

Gontijo, I.

I. Gontijo, T. Krauss, J. H. Marsh, R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 30, 1189–1195 (1994).
[CrossRef]

Gossard, A. C.

P. M. Petroff, R. C. Miller, A. C. Gossard, W. Wiegmann, “Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 44, 217–219 (1984).
[CrossRef]

Hamoudi, A.

E. V. K. Rao, A. Hamoudi, Ph. Krauz, M. Juhel, H. Thibierge, “New encapsulant source for III–V quantum well disordering,” Appl. Phys. Lett. 66, 472–474 (1995).
[CrossRef]

Harrison, I.

I. Harrison, “Ga-Al interdiffusion in intrinsic GaAs–AlAs superlattices,” in Properties of GaAs, Electronic Materials Information Service Datareview Series, No. 2, 2nd ed. (Inspec. IEE, London, 1990).

Henry, C. H.

C. H. Henry, R. A. Logan, F. R. Merritt, “The effect of surface recombination on current in AlxGa1–xAs heterojunctions,” J. Appl. Phys. 49, 3530–3542 (1978).
[CrossRef]

Hirata, T.

T. Hirata, M. Maeda, M. Suehiro, H. Hosomatsu, “Fabrication and characteristics of GaAs-AlGaAs tunable laser diodes with DBR and phase-control sections integrated by compositional disordering of a quantum well,” IEEE J. Quantum Electron. 27, 1609–1615 (1991).
[CrossRef]

Holonyak, N.

D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
[CrossRef]

Hosomatsu, H.

T. Hirata, M. Maeda, M. Suehiro, H. Hosomatsu, “Fabrication and characteristics of GaAs-AlGaAs tunable laser diodes with DBR and phase-control sections integrated by compositional disordering of a quantum well,” IEEE J. Quantum Electron. 27, 1609–1615 (1991).
[CrossRef]

Hsieh, K. C.

D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
[CrossRef]

Huang, Y. H.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Joyce, W. B.

P. D. Wright, W. B. Joyce, D. C. Craft, “Electrical derivative characteristics of InGaAsP buried heterostructure lasers,” J. Appl. Phys. 53, 1364–1372 (1982).
[CrossRef]

Juhel, M.

E. V. K. Rao, A. Hamoudi, Ph. Krauz, M. Juhel, H. Thibierge, “New encapsulant source for III–V quantum well disordering,” Appl. Phys. Lett. 66, 472–474 (1995).
[CrossRef]

Kapon, E.

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

Kawado, S.

E. Morita, J. Kosahara, S. Kawado, “Transmission electron microscopic observation of microdefects in Zn+-implanted GaAs,” Jpn. J. Appl. Phys. 24, 1274–1281 (1985).
[CrossRef]

Kosahara, J.

E. Morita, J. Kosahara, S. Kawado, “Transmission electron microscopic observation of microdefects in Zn+-implanted GaAs,” Jpn. J. Appl. Phys. 24, 1274–1281 (1985).
[CrossRef]

Koteles, E. S.

E. S. Koteles, B. Elman, P. Melman, J. Y. Chi, C. A. Armiento, “Quantum well shape modification using vacancy generation and rapid thermal annealing,” Opt. Quantum Electron. 23, S779–S787 (1991).
[CrossRef]

Krauss, T.

I. Gontijo, T. Krauss, J. H. Marsh, R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 30, 1189–1195 (1994).
[CrossRef]

Krauz, Ph.

E. V. K. Rao, A. Hamoudi, Ph. Krauz, M. Juhel, H. Thibierge, “New encapsulant source for III–V quantum well disordering,” Appl. Phys. Lett. 66, 472–474 (1995).
[CrossRef]

Lee, K. W.

H. Ribot, K. W. Lee, R. J. Simes, R. H. Yan, L. A. Coldren, “Disordering of GaAs/AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator,” Appl. Phys. Lett. 55, 672–674 (1989).
[CrossRef]

Lee, T. P.

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

Li, G.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Logan, R. A.

C. H. Henry, R. A. Logan, F. R. Merritt, “The effect of surface recombination on current in AlxGa1–xAs heterojunctions,” J. Appl. Phys. 49, 3530–3542 (1978).
[CrossRef]

Maeda, M.

T. Hirata, M. Maeda, M. Suehiro, H. Hosomatsu, “Fabrication and characteristics of GaAs-AlGaAs tunable laser diodes with DBR and phase-control sections integrated by compositional disordering of a quantum well,” IEEE J. Quantum Electron. 27, 1609–1615 (1991).
[CrossRef]

Marsh, J. H.

I. Gontijo, T. Krauss, J. H. Marsh, R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 30, 1189–1195 (1994).
[CrossRef]

Mayer, J. W.

K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992).

Melman, P.

E. S. Koteles, B. Elman, P. Melman, J. Y. Chi, C. A. Armiento, “Quantum well shape modification using vacancy generation and rapid thermal annealing,” Opt. Quantum Electron. 23, S779–S787 (1991).
[CrossRef]

Merritt, F. R.

C. H. Henry, R. A. Logan, F. R. Merritt, “The effect of surface recombination on current in AlxGa1–xAs heterojunctions,” J. Appl. Phys. 49, 3530–3542 (1978).
[CrossRef]

Miller, R. C.

P. M. Petroff, R. C. Miller, A. C. Gossard, W. Wiegmann, “Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 44, 217–219 (1984).
[CrossRef]

Morita, E.

E. Morita, J. Kosahara, S. Kawado, “Transmission electron microscopic observation of microdefects in Zn+-implanted GaAs,” Jpn. J. Appl. Phys. 24, 1274–1281 (1985).
[CrossRef]

Ooi, B. S.

B. S. Ooi, Phosistor Technologies Inc., Livermore, Calif. (personal communication, 1997).

Panish, M. B.

H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Sec. 7–7.

Petroff, P. M.

P. M. Petroff, R. C. Miller, A. C. Gossard, W. Wiegmann, “Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 44, 217–219 (1984).
[CrossRef]

Plano, W. E.

D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
[CrossRef]

Ralston, J.

J. Ralston, G. W. Wicks, L. F. Eastman, B. C. DeCooman, C. B. Carter, “Defect structure and intermixing of ion-implanted AlxGa1–xAs-GaAs superlattices,” J. Appl. Phys. 59, 120–123 (1986).
[CrossRef]

Rao, E. V. K.

E. V. K. Rao, A. Hamoudi, Ph. Krauz, M. Juhel, H. Thibierge, “New encapsulant source for III–V quantum well disordering,” Appl. Phys. Lett. 66, 472–474 (1995).
[CrossRef]

Ribot, H.

H. Ribot, K. W. Lee, R. J. Simes, R. H. Yan, L. A. Coldren, “Disordering of GaAs/AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator,” Appl. Phys. Lett. 55, 672–674 (1989).
[CrossRef]

Robbins, V. M.

D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
[CrossRef]

Runyan, W. R.

W. R. Runyan, K. E. Bean, Semiconductor Integrated Circuit Processing Technology (Addison-Wesley, Reading, Mass., 1990), Sec. 4-6.

Schwartz, L. C.

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

Schwarz, S. A.

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

Simes, R. J.

H. Ribot, K. W. Lee, R. J. Simes, R. H. Yan, L. A. Coldren, “Disordering of GaAs/AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator,” Appl. Phys. Lett. 55, 672–674 (1989).
[CrossRef]

Song, Y. P.

H. H. Yee, S. G. Ayling, R. M. De La Rue, B. Vogele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

Stoffel, N. G.

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

Suehiro, M.

T. Hirata, M. Maeda, M. Suehiro, H. Hosomatsu, “Fabrication and characteristics of GaAs-AlGaAs tunable laser diodes with DBR and phase-control sections integrated by compositional disordering of a quantum well,” IEEE J. Quantum Electron. 27, 1609–1615 (1991).
[CrossRef]

Teng, J. H.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Thibierge, H.

E. V. K. Rao, A. Hamoudi, Ph. Krauz, M. Juhel, H. Thibierge, “New encapsulant source for III–V quantum well disordering,” Appl. Phys. Lett. 66, 472–474 (1995).
[CrossRef]

Tu, K. N.

K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992).

Vogele, B.

H. H. Yee, S. G. Ayling, R. M. De La Rue, B. Vogele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

Wang, Z. J.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Werner, J.

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

Wicks, G. W.

J. Ralston, G. W. Wicks, L. F. Eastman, B. C. DeCooman, C. B. Carter, “Defect structure and intermixing of ion-implanted AlxGa1–xAs-GaAs superlattices,” J. Appl. Phys. 59, 120–123 (1986).
[CrossRef]

Wiegmann, W.

P. M. Petroff, R. C. Miller, A. C. Gossard, W. Wiegmann, “Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 44, 217–219 (1984).
[CrossRef]

Wright, P. D.

P. D. Wright, W. B. Joyce, D. C. Craft, “Electrical derivative characteristics of InGaAsP buried heterostructure lasers,” J. Appl. Phys. 53, 1364–1372 (1982).
[CrossRef]

Yan, R. H.

H. Ribot, K. W. Lee, R. J. Simes, R. H. Yan, L. A. Coldren, “Disordering of GaAs/AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator,” Appl. Phys. Lett. 55, 672–674 (1989).
[CrossRef]

Yee, H. H.

H. H. Yee, S. G. Ayling, R. M. De La Rue, B. Vogele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

Zhang, Z. H.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Appl. Phys. Lett.

J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990).
[CrossRef]

H. Ribot, K. W. Lee, R. J. Simes, R. H. Yan, L. A. Coldren, “Disordering of GaAs/AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator,” Appl. Phys. Lett. 55, 672–674 (1989).
[CrossRef]

P. M. Petroff, R. C. Miller, A. C. Gossard, W. Wiegmann, “Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 44, 217–219 (1984).
[CrossRef]

E. V. K. Rao, A. Hamoudi, Ph. Krauz, M. Juhel, H. Thibierge, “New encapsulant source for III–V quantum well disordering,” Appl. Phys. Lett. 66, 472–474 (1995).
[CrossRef]

IEE Proc. Optoelectron.

H. H. Yee, S. G. Ayling, R. M. De La Rue, B. Vogele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996).
[CrossRef]

IEEE J. Quantum Electron.

T. Hirata, M. Maeda, M. Suehiro, H. Hosomatsu, “Fabrication and characteristics of GaAs-AlGaAs tunable laser diodes with DBR and phase-control sections integrated by compositional disordering of a quantum well,” IEEE J. Quantum Electron. 27, 1609–1615 (1991).
[CrossRef]

I. Gontijo, T. Krauss, J. H. Marsh, R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 30, 1189–1195 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

J. Appl. Phys.

D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988).
[CrossRef]

J. Ralston, G. W. Wicks, L. F. Eastman, B. C. DeCooman, C. B. Carter, “Defect structure and intermixing of ion-implanted AlxGa1–xAs-GaAs superlattices,” J. Appl. Phys. 59, 120–123 (1986).
[CrossRef]

C. H. Henry, R. A. Logan, F. R. Merritt, “The effect of surface recombination on current in AlxGa1–xAs heterojunctions,” J. Appl. Phys. 49, 3530–3542 (1978).
[CrossRef]

P. D. Wright, W. B. Joyce, D. C. Craft, “Electrical derivative characteristics of InGaAsP buried heterostructure lasers,” J. Appl. Phys. 53, 1364–1372 (1982).
[CrossRef]

Jpn. J. Appl. Phys.

E. Morita, J. Kosahara, S. Kawado, “Transmission electron microscopic observation of microdefects in Zn+-implanted GaAs,” Jpn. J. Appl. Phys. 24, 1274–1281 (1985).
[CrossRef]

Opt. Quantum Electron.

E. S. Koteles, B. Elman, P. Melman, J. Y. Chi, C. A. Armiento, “Quantum well shape modification using vacancy generation and rapid thermal annealing,” Opt. Quantum Electron. 23, S779–S787 (1991).
[CrossRef]

Other

K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992).

I. Harrison, “Ga-Al interdiffusion in intrinsic GaAs–AlAs superlattices,” in Properties of GaAs, Electronic Materials Information Service Datareview Series, No. 2, 2nd ed. (Inspec. IEE, London, 1990).

B. S. Ooi, Phosistor Technologies Inc., Livermore, Calif. (personal communication, 1997).

H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Sec. 7–7.

W. R. Runyan, K. E. Bean, Semiconductor Integrated Circuit Processing Technology (Addison-Wesley, Reading, Mass., 1990), Sec. 4-6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dielectric capping on the microstructure for quantum-well disordering.

Fig. 2
Fig. 2

(a) Relative PL peak shifts of the SiO2-capped to SrF2-capped regions depending on RTA times with anneal temperatures as parameters. (b) Typical PL measurement (77 K) results with RTA at 930 °C for 50 s of DCD. S 1, as-grown sample; S 2, RTA with SrF2 cap; S 3, RTA with SiO2 cap; S 4, RTA with SiO2 cap (low-stress deposition depicted in Section 5).

Fig. 3
Fig. 3

Surface morphology after RTA at 930 °C for 50 s. The section above the solid line is the SrF2-capped region, the lower section represents the SiO2-capped region.

Fig. 4
Fig. 4

Scanning electron microscope micrographs of the SiO2-capped surface morphologies annealed at (a) 920 °C and (b) 940 °C for 30 s.

Fig. 5
Fig. 5

(a) Threshold current densities as a function of the inverse cavity lengths for the FP cavity lasers that we used. (b) L-I curves of the broad-area FP cavity lasers fabricated after QW disordering with four capping conditions: S 1, as-grown sample; S 2, RTA with a SrF2 cap; S 3, RTA with a SiO2 cap; S 4, RTA with a SiO2 cap (low-stress deposition).

Fig. 6
Fig. 6

Dielectric-capped GaAs surfaces deposited under normal PECVD conditions (10 W/1000 mTorr/300 °C) (a) before and (b) after RTA. Note that the central darker stripe is the SiO2-capped region and outside this stripe is the SrF2-capped region. (c) The sample with the SiO2 layer deposited under optimal conditions (8 W/730 mTorr/260 °C) after RTA at 930 °C for 50 s. The data in the parentheses from (a) to (c) are microwave power, chamber pressure, and deposition temperature, respectively, for PECVD.

Tables (1)

Tables Icon

Table 1 Series Resistances and Ideality Factors of Different Laser Diodes

Metrics