Abstract

A coarse wavelength division multiplexer is designed on a silicon-on-insulator waveguide using the Mach–Zehnder interferometers with novel multimode interface–periodically segmented waveguide couplers and segmented waveguide arms. It is viable for metro and access applications, since it can be inexpensive and provide easy fabrication, compact size, and good output performance. As a design example, the channel spacing of the demultiplexer is chosen to be 24.5 nm for applications to the 10-Gigabit Ethernet. The simulation results show that the wide-passband demultiplexer can have insertion loss less than 2.3 dB and crosstalk better than 18 dB.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
    [CrossRef]
  2. Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
    [CrossRef]
  3. B. H. Verbeek, G. H. Henry, N. A. Olsson, “Integrated four-channel Mach–Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6, 1011–1015 (1988).
    [CrossRef]
  4. M. Kuznetsov, “Cascaded coupler Mach–Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,” J. Lightwave Technol. 12, 226–230 (1994).
    [CrossRef]
  5. H. H. Yaffe, C. H. Henry, M. R. Serbin, L. G. Cohen, “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology,” J. Lightwave Technol. 12, 1010–1014 (1994).
    [CrossRef]
  6. C. Kostrzewa, K. Petermann, “Bandwidth optimization of optical add/drop multiplexers using cascaded couplers and Mach–Zehnder sections,” IEEE Photon. Technol. Lett. 7, 902–904 (1995).
    [CrossRef]
  7. B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
    [CrossRef]
  8. T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett. 35, 977–978 (1999).
    [CrossRef]
  9. M. Rajarajan, B. M. A. Rahman, K. T. V. Grattan, “A rigorous comparison of the performance of directional couplers with multimode interference devices,” J. Lightwave Technol. 17, 243–248 (1999).
    [CrossRef]
  10. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  11. N. S. Lagali, M. R. Paiam, R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
    [CrossRef]
  12. N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, A. Driessen, “Analysis of generalized Mach–Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
    [CrossRef]
  13. T. Saida, A. Himeno, M. Okuno, A. Sugita, K. Okamoto, “Silica-based 2 × 2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. 35, 2031–2033 (1999).
    [CrossRef]
  14. D. Ortega, R. M. De La Rue, J. S. Aitchison, “Cutoff wavelength of periodically segmented waveguides in Ti:LiNbO3,” J. Lightwave Technol. 16, 284–290 (1998).
    [CrossRef]
  15. R. Scarmozzino, R. M. Osgood, “Comparison of finite-difference and fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A. 8, 724–731 (1991).
    [CrossRef]
  16. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
    [CrossRef]
  17. W. P. Huang, C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
    [CrossRef]
  18. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
    [CrossRef]
  19. J. Aarnio, P. Heimala, M. D. Giudice, F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27, 2317–2318 (1991).
    [CrossRef]
  20. K. Jinguji, M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
    [CrossRef]
  21. Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
    [CrossRef]
  22. K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).
    [CrossRef]

2002

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

2000

1999

M. Rajarajan, B. M. A. Rahman, K. T. V. Grattan, “A rigorous comparison of the performance of directional couplers with multimode interference devices,” J. Lightwave Technol. 17, 243–248 (1999).
[CrossRef]

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, A. Driessen, “Analysis of generalized Mach–Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
[CrossRef]

B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
[CrossRef]

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett. 35, 977–978 (1999).
[CrossRef]

N. S. Lagali, M. R. Paiam, R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[CrossRef]

T. Saida, A. Himeno, M. Okuno, A. Sugita, K. Okamoto, “Silica-based 2 × 2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. 35, 2031–2033 (1999).
[CrossRef]

1998

1997

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

1995

C. Kostrzewa, K. Petermann, “Bandwidth optimization of optical add/drop multiplexers using cascaded couplers and Mach–Zehnder sections,” IEEE Photon. Technol. Lett. 7, 902–904 (1995).
[CrossRef]

K. Jinguji, M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[CrossRef]

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

1994

M. Kuznetsov, “Cascaded coupler Mach–Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,” J. Lightwave Technol. 12, 226–230 (1994).
[CrossRef]

H. H. Yaffe, C. H. Henry, M. R. Serbin, L. G. Cohen, “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology,” J. Lightwave Technol. 12, 1010–1014 (1994).
[CrossRef]

1993

W. P. Huang, C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
[CrossRef]

1992

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
[CrossRef]

1991

J. Aarnio, P. Heimala, M. D. Giudice, F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27, 2317–2318 (1991).
[CrossRef]

R. Scarmozzino, R. M. Osgood, “Comparison of finite-difference and fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A. 8, 724–731 (1991).
[CrossRef]

1988

B. H. Verbeek, G. H. Henry, N. A. Olsson, “Integrated four-channel Mach–Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6, 1011–1015 (1988).
[CrossRef]

Aarnio, J.

J. Aarnio, P. Heimala, M. D. Giudice, F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27, 2317–2318 (1991).
[CrossRef]

Aitchison, J. S.

Ang, T. W.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett. 35, 977–978 (1999).
[CrossRef]

Beyeler, R.

B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
[CrossRef]

Bona, G. L.

B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
[CrossRef]

Bruno, F.

J. Aarnio, P. Heimala, M. D. Giudice, F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27, 2317–2318 (1991).
[CrossRef]

Buckman, L. A.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

Cohen, L. G.

H. H. Yaffe, C. H. Henry, M. R. Serbin, L. G. Cohen, “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology,” J. Lightwave Technol. 12, 1010–1014 (1994).
[CrossRef]

Coppinger, F.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

De La Rue, R. M.

Driessen, A.

Evans, A. G. R.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett. 35, 977–978 (1999).
[CrossRef]

Germann, R.

B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
[CrossRef]

Giudice, M. D.

J. Aarnio, P. Heimala, M. D. Giudice, F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27, 2317–2318 (1991).
[CrossRef]

Gong, W.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

Grattan, K. T. V.

Hadley, G. R.

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
[CrossRef]

Hanawa, F.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Heimala, P.

J. Aarnio, P. Heimala, M. D. Giudice, F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27, 2317–2318 (1991).
[CrossRef]

Henry, C. H.

H. H. Yaffe, C. H. Henry, M. R. Serbin, L. G. Cohen, “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology,” J. Lightwave Technol. 12, 1010–1014 (1994).
[CrossRef]

Henry, G. H.

B. H. Verbeek, G. H. Henry, N. A. Olsson, “Integrated four-channel Mach–Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6, 1011–1015 (1988).
[CrossRef]

Hibino, Y.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
[CrossRef]

Himeno, A.

T. Saida, A. Himeno, M. Okuno, A. Sugita, K. Okamoto, “Silica-based 2 × 2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. 35, 2031–2033 (1999).
[CrossRef]

Horst, F.

B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
[CrossRef]

Huang, W. P.

W. P. Huang, C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
[CrossRef]

Inoue, Y.

Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
[CrossRef]

Ishii, M.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
[CrossRef]

Jalali, B.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

Jinguji, K.

K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).
[CrossRef]

K. Jinguji, M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[CrossRef]

Kawachi, M.

K. Jinguji, M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[CrossRef]

Kawata, H.

Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
[CrossRef]

Kitoh, T.

Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
[CrossRef]

Kostrzewa, C.

C. Kostrzewa, K. Petermann, “Bandwidth optimization of optical add/drop multiplexers using cascaded couplers and Mach–Zehnder sections,” IEEE Photon. Technol. Lett. 7, 902–904 (1995).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, “Cascaded coupler Mach–Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,” J. Lightwave Technol. 12, 226–230 (1994).
[CrossRef]

Lagali, N. S.

N. S. Lagali, M. R. Paiam, R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[CrossRef]

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, A. Driessen, “Analysis of generalized Mach–Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
[CrossRef]

Lemoff, B. E.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

MacDonald, R. I.

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, A. Driessen, “Analysis of generalized Mach–Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
[CrossRef]

N. S. Lagali, M. R. Paiam, R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[CrossRef]

Nakagome, H.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Offrein, B. J.

B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
[CrossRef]

Oguma, M.

K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).
[CrossRef]

Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
[CrossRef]

Okamoto, K.

T. Saida, A. Himeno, M. Okuno, A. Sugita, K. Okamoto, “Silica-based 2 × 2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. 35, 2031–2033 (1999).
[CrossRef]

Okuno, M.

T. Saida, A. Himeno, M. Okuno, A. Sugita, K. Okamoto, “Silica-based 2 × 2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. 35, 2031–2033 (1999).
[CrossRef]

Olsson, N. A.

B. H. Verbeek, G. H. Henry, N. A. Olsson, “Integrated four-channel Mach–Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6, 1011–1015 (1988).
[CrossRef]

Ortega, D.

Osgood, R. M.

R. Scarmozzino, R. M. Osgood, “Comparison of finite-difference and fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A. 8, 724–731 (1991).
[CrossRef]

Paiam, M. R.

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, A. Driessen, “Analysis of generalized Mach–Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
[CrossRef]

N. S. Lagali, M. R. Paiam, R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Petermann, K.

C. Kostrzewa, K. Petermann, “Bandwidth optimization of optical add/drop multiplexers using cascaded couplers and Mach–Zehnder sections,” IEEE Photon. Technol. Lett. 7, 902–904 (1995).
[CrossRef]

Rahman, B. M. A.

Rajarajan, M.

Reed, G. T.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett. 35, 977–978 (1999).
[CrossRef]

Routley, P. R.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett. 35, 977–978 (1999).
[CrossRef]

Saida, T.

T. Saida, A. Himeno, M. Okuno, A. Sugita, K. Okamoto, “Silica-based 2 × 2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. 35, 2031–2033 (1999).
[CrossRef]

Salemink, H. W. M.

B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
[CrossRef]

Scarmozzino, R.

R. Scarmozzino, R. M. Osgood, “Comparison of finite-difference and fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A. 8, 724–731 (1991).
[CrossRef]

Schmit, A. J.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

Serbin, M. R.

H. H. Yaffe, C. H. Henry, M. R. Serbin, L. G. Cohen, “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology,” J. Lightwave Technol. 12, 1010–1014 (1994).
[CrossRef]

Shibata, T.

Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
[CrossRef]

Soldano, L. B.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Sugie, T.

Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
[CrossRef]

Sugita, A.

T. Saida, A. Himeno, M. Okuno, A. Sugita, K. Okamoto, “Silica-based 2 × 2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. 35, 2031–2033 (1999).
[CrossRef]

Takato, N.

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

Tella, R. P.

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

Trinh, P. D.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

Verbeek, B. H.

B. H. Verbeek, G. H. Henry, N. A. Olsson, “Integrated four-channel Mach–Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6, 1011–1015 (1988).
[CrossRef]

Vonsovici, A.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett. 35, 977–978 (1999).
[CrossRef]

Worhoff, K.

Xu, C. L.

W. P. Huang, C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
[CrossRef]

Yaffe, H. H.

H. H. Yaffe, C. H. Henry, M. R. Serbin, L. G. Cohen, “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology,” J. Lightwave Technol. 12, 1010–1014 (1994).
[CrossRef]

Yegnanarayanan, S.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

Electron. Lett.

T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett. 35, 977–978 (1999).
[CrossRef]

J. Aarnio, P. Heimala, M. D. Giudice, F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27, 2317–2318 (1991).
[CrossRef]

T. Saida, A. Himeno, M. Okuno, A. Sugita, K. Okamoto, “Silica-based 2 × 2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. 35, 2031–2033 (1999).
[CrossRef]

IEEE J. Quantum Electron.

G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
[CrossRef]

W. P. Huang, C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

C. Kostrzewa, K. Petermann, “Bandwidth optimization of optical add/drop multiplexers using cascaded couplers and Mach–Zehnder sections,” IEEE Photon. Technol. Lett. 7, 902–904 (1995).
[CrossRef]

B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
[CrossRef]

L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
[CrossRef]

N. S. Lagali, M. R. Paiam, R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[CrossRef]

J. Lightwave Technol.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
[CrossRef]

B. H. Verbeek, G. H. Henry, N. A. Olsson, “Integrated four-channel Mach–Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6, 1011–1015 (1988).
[CrossRef]

M. Kuznetsov, “Cascaded coupler Mach–Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,” J. Lightwave Technol. 12, 226–230 (1994).
[CrossRef]

H. H. Yaffe, C. H. Henry, M. R. Serbin, L. G. Cohen, “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology,” J. Lightwave Technol. 12, 1010–1014 (1994).
[CrossRef]

K. Jinguji, M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
[CrossRef]

D. Ortega, R. M. De La Rue, J. S. Aitchison, “Cutoff wavelength of periodically segmented waveguides in Ti:LiNbO3,” J. Lightwave Technol. 16, 284–290 (1998).
[CrossRef]

K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).
[CrossRef]

M. Rajarajan, B. M. A. Rahman, K. T. V. Grattan, “A rigorous comparison of the performance of directional couplers with multimode interference devices,” J. Lightwave Technol. 17, 243–248 (1999).
[CrossRef]

N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, A. Driessen, “Analysis of generalized Mach–Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
[CrossRef]

J. Opt. Soc. Am. A.

R. Scarmozzino, R. M. Osgood, “Comparison of finite-difference and fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A. 8, 724–731 (1991).
[CrossRef]

Other

Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Cross section of ridge waveguide and (b) top view of the four-channel wide passband modified MZI wavelength demultiplexer.

Fig. 2
Fig. 2

(a) Schematic of a PSW. (b) The radiation loss as a function of duty cycle and period.

Fig. 3
Fig. 3

Simulated transmission power of the two-port MZI device against wavelength.

Fig. 4
Fig. 4

The configuration of the MMI/PSW coupler that can provide an arbitrary power-splitting ratio.

Fig. 5
Fig. 5

Power-splitting ratio and excess loss of the MMI/PSW coupler.

Fig. 6
Fig. 6

Transmission ratio against wavelength for the MZI/PSW filters.

Fig. 7
Fig. 7

Simulated intensity evolution along the waveguide for the CWDM channels: (a) 1275.7, (b) 1300.2, (c) 1324.7, and (d) 1349.2 nm.

Fig. 8
Fig. 8

Demultiplexing properties of the four-channel wide-passband CWDM demultiplexer.

Tables (1)

Tables Icon

Table 1 Optical Characteristics of Wideband CWDM Module

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

WHr1-r21/2,
r0.5.
PO1=P1 sin2πneffΔL/λ0+P2 cos2πneffΔL/λ0,
PO2=P1 cos2πneffΔL/λ0+P2 sin2πneffΔL/λ0,
PO1=P1 sin2πns+ηΔnΔL/λ0+P2 cos2πns+ηΔnΔL/λ0,
PO2=P1 cos2πns+ηΔnΔL/λ0+P2 sin2πns+ηΔnΔL/λ0.

Metrics