Abstract

We describe the performance of a fiber-optic power-limiting component. The passive device is dynamically responsive to the input signal and has been shown to attenuate continuous-wave power with a dynamic range of up to 9 dB at 150 mW of input power at 1550 nm. The limiting threshold is approximately 30 mW from 1530 to 1565 nm and less than 10 mW at 1430 nm. The device is activated by a photothermal defocusing mechanism in an optical polymer fixed between two expanded core fibers that collimate light through the material. The magnitude and threshold of the limiting response is dependent on the absorption properties of the polymer and the size of the gap between the two fiber endfaces. Simple model calculations have been made to predict the limiting response, and they agree reasonably well with the performance of the actual device.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lindstrom, “Gain flattening drives the evolution to agile networks,” FiberSyst. Int. 3, 26–28 (2002).
  2. P. Ferm, J. Mato, M. Maxfield, L. W. Shacklette, “Prototyping and validation of thermo-optic planar polymer waveguide devices,” in Design and Fabrication of Planar Optical Waveguide Devices and Materials, R. A. Norwood, ed., Proc. SPIE4805, 87–97 (2002).
    [CrossRef]
  3. W. K. Bischel, T. C. Kowalczyk, “Device for variable attenuation of an optical channel,” U.S. patent6,434,318 (13August2002).
  4. B. E. Burns, T.-Y. Hsu, “Micromachined voltage controlled optical attenuator,” U.S. patent6,343,178 (29January2002).
  5. V. R. Dhuler, E. A. Hill, R. Mahadevan, M. D. Walters, R. L. Wood, “MEMS variable optical attenuator,” European patent application EP 1,089,109 (4April2001).
  6. W. L. DeBoynton, M. Uschitsky, “Fiber coupler variable optical attenuator,” U.S. patent6,173,106 (9January2001).
  7. W. Sorin, S. H. Yun, B. Y. Kim, “Channel equalizer with acousto-optic variable attenuators,” WO0,191,349 (29November2001).
  8. S. Yerlan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, I. Condrich, eds., Proc. SPIE4291, 79–88 (2001).
    [CrossRef]
  9. M. Xu, T. Huang, C. Mao, J.-Y. Liu, K.-Y. Wu, C. Wong, “Dynamic gain equalizer for optical amplifiers,” U.S. patent6,429,962 (6August2002).
  10. M. DeRosa, S. Logunov, “Photothermal behavior of an optical path adhesive used for photonics applications at 1550 nm,” Appl. Opt. 40, 6611–6617 (2001).
    [CrossRef]
  11. M. E. DeRosa, S. J. Caracci, D. C. Bookbinder, T. M. Leslie, S. L. Logunov, “Photothermal optical signal limiter,” U.S. patent6,415,075 (2July2002).
  12. K. Shiraishi, Y. Aizawa, S. Kwakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
    [CrossRef]
  13. M. DeRosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, “High-power performance of single-mode fiber optic connectors,” J. Lightwave Technol. 20, 879–885 (2002).
    [CrossRef]
  14. M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber-optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).
  15. D. Marcuse, “Loss analysis of single-moded fiber splices,” Bell Syst. Tech. J. 56, 181–188 (1977).
    [CrossRef]

2002 (2)

A. Lindstrom, “Gain flattening drives the evolution to agile networks,” FiberSyst. Int. 3, 26–28 (2002).

M. DeRosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, “High-power performance of single-mode fiber optic connectors,” J. Lightwave Technol. 20, 879–885 (2002).
[CrossRef]

2001 (1)

1990 (1)

K. Shiraishi, Y. Aizawa, S. Kwakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

1977 (1)

D. Marcuse, “Loss analysis of single-moded fiber splices,” Bell Syst. Tech. J. 56, 181–188 (1977).
[CrossRef]

Aizawa, Y.

K. Shiraishi, Y. Aizawa, S. Kwakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

Ashmead, A. C.

S. Yerlan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, I. Condrich, eds., Proc. SPIE4291, 79–88 (2001).
[CrossRef]

Beeson, K. W.

M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber-optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).

Bhagavatula, V.

M. DeRosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, “High-power performance of single-mode fiber optic connectors,” J. Lightwave Technol. 20, 879–885 (2002).
[CrossRef]

Bischel, W. K.

W. K. Bischel, T. C. Kowalczyk, “Device for variable attenuation of an optical channel,” U.S. patent6,434,318 (13August2002).

Bookbinder, D. C.

M. E. DeRosa, S. J. Caracci, D. C. Bookbinder, T. M. Leslie, S. L. Logunov, “Photothermal optical signal limiter,” U.S. patent6,415,075 (2July2002).

Burns, B. E.

B. E. Burns, T.-Y. Hsu, “Micromachined voltage controlled optical attenuator,” U.S. patent6,343,178 (29January2002).

Caracci, S. J.

M. E. DeRosa, S. J. Caracci, D. C. Bookbinder, T. M. Leslie, S. L. Logunov, “Photothermal optical signal limiter,” U.S. patent6,415,075 (2July2002).

Carberry, J.

M. DeRosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, “High-power performance of single-mode fiber optic connectors,” J. Lightwave Technol. 20, 879–885 (2002).
[CrossRef]

Cid, R.

S. Yerlan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, I. Condrich, eds., Proc. SPIE4291, 79–88 (2001).
[CrossRef]

DeBoynton, W. L.

W. L. DeBoynton, M. Uschitsky, “Fiber coupler variable optical attenuator,” U.S. patent6,173,106 (9January2001).

DeRosa, M.

M. DeRosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, “High-power performance of single-mode fiber optic connectors,” J. Lightwave Technol. 20, 879–885 (2002).
[CrossRef]

M. DeRosa, S. Logunov, “Photothermal behavior of an optical path adhesive used for photonics applications at 1550 nm,” Appl. Opt. 40, 6611–6617 (2001).
[CrossRef]

DeRosa, M. E.

M. E. DeRosa, S. J. Caracci, D. C. Bookbinder, T. M. Leslie, S. L. Logunov, “Photothermal optical signal limiter,” U.S. patent6,415,075 (2July2002).

Dhuler, V. R.

V. R. Dhuler, E. A. Hill, R. Mahadevan, M. D. Walters, R. L. Wood, “MEMS variable optical attenuator,” European patent application EP 1,089,109 (4April2001).

Ferm, P.

P. Ferm, J. Mato, M. Maxfield, L. W. Shacklette, “Prototyping and validation of thermo-optic planar polymer waveguide devices,” in Design and Fabrication of Planar Optical Waveguide Devices and Materials, R. A. Norwood, ed., Proc. SPIE4805, 87–97 (2002).
[CrossRef]

Gunther, J.

S. Yerlan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, I. Condrich, eds., Proc. SPIE4291, 79–88 (2001).
[CrossRef]

Hill, E. A.

V. R. Dhuler, E. A. Hill, R. Mahadevan, M. D. Walters, R. L. Wood, “MEMS variable optical attenuator,” European patent application EP 1,089,109 (4April2001).

Hsu, T.-Y.

B. E. Burns, T.-Y. Hsu, “Micromachined voltage controlled optical attenuator,” U.S. patent6,343,178 (29January2002).

Huang, T.

M. Xu, T. Huang, C. Mao, J.-Y. Liu, K.-Y. Wu, C. Wong, “Dynamic gain equalizer for optical amplifiers,” U.S. patent6,429,962 (6August2002).

Kim, B. Y.

W. Sorin, S. H. Yun, B. Y. Kim, “Channel equalizer with acousto-optic variable attenuators,” WO0,191,349 (29November2001).

Kowalczyk, T. C.

W. K. Bischel, T. C. Kowalczyk, “Device for variable attenuation of an optical channel,” U.S. patent6,434,318 (13August2002).

Kwakami, S.

K. Shiraishi, Y. Aizawa, S. Kwakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

Leslie, T. M.

M. E. DeRosa, S. J. Caracci, D. C. Bookbinder, T. M. Leslie, S. L. Logunov, “Photothermal optical signal limiter,” U.S. patent6,415,075 (2July2002).

Lindstrom, A.

A. Lindstrom, “Gain flattening drives the evolution to agile networks,” FiberSyst. Int. 3, 26–28 (2002).

Liu, J.-Y.

M. Xu, T. Huang, C. Mao, J.-Y. Liu, K.-Y. Wu, C. Wong, “Dynamic gain equalizer for optical amplifiers,” U.S. patent6,429,962 (6August2002).

Logunov, S.

Logunov, S. L.

M. E. DeRosa, S. J. Caracci, D. C. Bookbinder, T. M. Leslie, S. L. Logunov, “Photothermal optical signal limiter,” U.S. patent6,415,075 (2July2002).

Mahadevan, R.

V. R. Dhuler, E. A. Hill, R. Mahadevan, M. D. Walters, R. L. Wood, “MEMS variable optical attenuator,” European patent application EP 1,089,109 (4April2001).

Mao, C.

M. Xu, T. Huang, C. Mao, J.-Y. Liu, K.-Y. Wu, C. Wong, “Dynamic gain equalizer for optical amplifiers,” U.S. patent6,429,962 (6August2002).

Marcuse, D.

D. Marcuse, “Loss analysis of single-moded fiber splices,” Bell Syst. Tech. J. 56, 181–188 (1977).
[CrossRef]

Mato, J.

P. Ferm, J. Mato, M. Maxfield, L. W. Shacklette, “Prototyping and validation of thermo-optic planar polymer waveguide devices,” in Design and Fabrication of Planar Optical Waveguide Devices and Materials, R. A. Norwood, ed., Proc. SPIE4805, 87–97 (2002).
[CrossRef]

Maxfield, M.

P. Ferm, J. Mato, M. Maxfield, L. W. Shacklette, “Prototyping and validation of thermo-optic planar polymer waveguide devices,” in Design and Fabrication of Planar Optical Waveguide Devices and Materials, R. A. Norwood, ed., Proc. SPIE4805, 87–97 (2002).
[CrossRef]

McFarland, M. J.

M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber-optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).

Popovich, M. M.

S. Yerlan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, I. Condrich, eds., Proc. SPIE4291, 79–88 (2001).
[CrossRef]

Ritums, D. L.

S. Yerlan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, I. Condrich, eds., Proc. SPIE4291, 79–88 (2001).
[CrossRef]

Saravanos, C.

M. DeRosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, “High-power performance of single-mode fiber optic connectors,” J. Lightwave Technol. 20, 879–885 (2002).
[CrossRef]

Shacklette, L. W.

P. Ferm, J. Mato, M. Maxfield, L. W. Shacklette, “Prototyping and validation of thermo-optic planar polymer waveguide devices,” in Design and Fabrication of Planar Optical Waveguide Devices and Materials, R. A. Norwood, ed., Proc. SPIE4805, 87–97 (2002).
[CrossRef]

Shiraishi, K.

K. Shiraishi, Y. Aizawa, S. Kwakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

Sorin, W.

W. Sorin, S. H. Yun, B. Y. Kim, “Channel equalizer with acousto-optic variable attenuators,” WO0,191,349 (29November2001).

Storey, J.

S. Yerlan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, I. Condrich, eds., Proc. SPIE4291, 79–88 (2001).
[CrossRef]

Uschitsky, M.

W. L. DeBoynton, M. Uschitsky, “Fiber coupler variable optical attenuator,” U.S. patent6,173,106 (9January2001).

Wagner, K.

M. DeRosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, “High-power performance of single-mode fiber optic connectors,” J. Lightwave Technol. 20, 879–885 (2002).
[CrossRef]

Walters, M. D.

V. R. Dhuler, E. A. Hill, R. Mahadevan, M. D. Walters, R. L. Wood, “MEMS variable optical attenuator,” European patent application EP 1,089,109 (4April2001).

Wong, C.

M. Xu, T. Huang, C. Mao, J.-Y. Liu, K.-Y. Wu, C. Wong, “Dynamic gain equalizer for optical amplifiers,” U.S. patent6,429,962 (6August2002).

Wood, R. L.

V. R. Dhuler, E. A. Hill, R. Mahadevan, M. D. Walters, R. L. Wood, “MEMS variable optical attenuator,” European patent application EP 1,089,109 (4April2001).

Wu, K.-Y.

M. Xu, T. Huang, C. Mao, J.-Y. Liu, K.-Y. Wu, C. Wong, “Dynamic gain equalizer for optical amplifiers,” U.S. patent6,429,962 (6August2002).

Xu, M.

M. Xu, T. Huang, C. Mao, J.-Y. Liu, K.-Y. Wu, C. Wong, “Dynamic gain equalizer for optical amplifiers,” U.S. patent6,429,962 (6August2002).

Yerlan, S.

S. Yerlan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, I. Condrich, eds., Proc. SPIE4291, 79–88 (2001).
[CrossRef]

Yun, S. H.

W. Sorin, S. H. Yun, B. Y. Kim, “Channel equalizer with acousto-optic variable attenuators,” WO0,191,349 (29November2001).

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-moded fiber splices,” Bell Syst. Tech. J. 56, 181–188 (1977).
[CrossRef]

FiberSyst. Int. (1)

A. Lindstrom, “Gain flattening drives the evolution to agile networks,” FiberSyst. Int. 3, 26–28 (2002).

J. Lightwave Technol. (2)

K. Shiraishi, Y. Aizawa, S. Kwakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

M. DeRosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, “High-power performance of single-mode fiber optic connectors,” J. Lightwave Technol. 20, 879–885 (2002).
[CrossRef]

Other (10)

M. J. McFarland, K. W. Beeson, “Polymer microstructures which facilitate fiber-optic to waveguide coupling,” U.S. patent5,359,687 (25October1994).

P. Ferm, J. Mato, M. Maxfield, L. W. Shacklette, “Prototyping and validation of thermo-optic planar polymer waveguide devices,” in Design and Fabrication of Planar Optical Waveguide Devices and Materials, R. A. Norwood, ed., Proc. SPIE4805, 87–97 (2002).
[CrossRef]

W. K. Bischel, T. C. Kowalczyk, “Device for variable attenuation of an optical channel,” U.S. patent6,434,318 (13August2002).

B. E. Burns, T.-Y. Hsu, “Micromachined voltage controlled optical attenuator,” U.S. patent6,343,178 (29January2002).

V. R. Dhuler, E. A. Hill, R. Mahadevan, M. D. Walters, R. L. Wood, “MEMS variable optical attenuator,” European patent application EP 1,089,109 (4April2001).

W. L. DeBoynton, M. Uschitsky, “Fiber coupler variable optical attenuator,” U.S. patent6,173,106 (9January2001).

W. Sorin, S. H. Yun, B. Y. Kim, “Channel equalizer with acousto-optic variable attenuators,” WO0,191,349 (29November2001).

S. Yerlan, J. Gunther, D. L. Ritums, R. Cid, J. Storey, A. C. Ashmead, M. M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. L. Sutherland, D. W. Prather, I. Condrich, eds., Proc. SPIE4291, 79–88 (2001).
[CrossRef]

M. Xu, T. Huang, C. Mao, J.-Y. Liu, K.-Y. Wu, C. Wong, “Dynamic gain equalizer for optical amplifiers,” U.S. patent6,429,962 (6August2002).

M. E. DeRosa, S. J. Caracci, D. C. Bookbinder, T. M. Leslie, S. L. Logunov, “Photothermal optical signal limiter,” U.S. patent6,415,075 (2July2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the optical fiber power limiter.

Fig. 2
Fig. 2

Near-infrared absorption spectrum of UV15 and NOA81 photothermally responsive limiter materials.

Fig. 3
Fig. 3

Schematic of fiber-optic photothermal limiting mechanism.

Fig. 4
Fig. 4

Optical power limiter behavior of UV15 material showing (a) output power (P out) versus input power (P in) at 1550 nm and (b) the change in IL (dB) versus input power (dBm).

Fig. 5
Fig. 5

Optical power attenuation of a 294-μm limiter device by use of NOA81. IL is plotted versus signal wavelength and incident power.

Fig. 6
Fig. 6

Optical limiting behavior of a 700-μm gap limiter at 1430 and 1550 nm by use of UV15.

Fig. 7
Fig. 7

Limiter performance at 1550 nm versus input power and gap length for the NOA81 adhesive limiter. The initial IL of the 143-μm gap is 0.66 dB, for the 294-μm gap it is 1.69 dB, and for the 420-μm gap it is 4.4 dB.

Fig. 8
Fig. 8

Modeling of the IL versus input power for the limiter at 1430 and 1550 nm.

Fig. 9
Fig. 9

Calculated limiter performance as a function of the polymer gap length.

Fig. 10
Fig. 10

Calculated initial IL of a limiter with a material having an absorption coefficient of 3 dB/cm (curve a) and 30 dB/cm (curve b). Curve C shows the calculated dependence of IL as a function of the limiter gap with either a fixed input power of 100 mW with a material absorbance of 3 dB/cm or a fixed input power of 10 mW with a material absorbance of 30 dB/cm.

Fig. 11
Fig. 11

Effect of MFD on the initial IL and induced attenuation during the operation of the device with a fixed gap of 1000 μm, input power of 100 mW, and material attenuation of 3 dB/cm. Initial IL is the dotted curve on the left Y axis and IL under the operational power is the solid curve on the right Y axis.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f  πnKa2Pαldn/dT,
w2w1=l+fl,
IL = 10 log2w1w2w12+w222 ,

Metrics