Abstract

The effects of velocity matching, impedance matching, conductor loss, and dielectric loss on the optical bandwidth of an ultra-high-speed lithium niobate modulator are reported. It is shown that both dielectric loss and impedance matching play a key role for velocity-matched high-speed modulators with low conductor loss. The effects of etch depth, buffer thickness, electrode width, and the gap between the electrodes on device performance are also illustrated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Dagli, “Wide-bandwidth laser and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
    [Crossref]
  2. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [Crossref]
  3. K. Noguchi, H. Miyazawa, O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. 34, 661–663 (1998).
    [Crossref]
  4. O. Mitomi, K. Noguchi, H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulator with ridge structure,” IEEE Microwave Theory Tech. 43, 2203–2207 (1995).
    [Crossref]
  5. K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1169 (1995).
    [Crossref]
  6. M. Minakata, “Recent progress of 40-GHz high-speed LiNbO3 optical modulator,” in Active and Passive Optical Components for WDM Communication, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K. Okamato, eds., Proc. SPIE4532, 16–27 (2001).
    [Crossref]
  7. M. Koshiba, Y. Tsuji, M. Nishio, “Finite-element modeling of broad-band traveling-wave optical modulators,” IEEE Microwave Theory Tech. 47, 1627–1633 (1999).
    [Crossref]
  8. T. Kitazawa, D. Polifko, H. Ogawa, “Analysis of CPW for LiNbO3 optical modulator by extended spectral-domain approach,” Microwave Guided Wave Lett. 2, 313–315 (1992).
    [Crossref]
  9. A. G. Keen, M. J. Wale, M. I. Sobhy, A. J. Holden, “Quasi-static analysis of electrooptic modulators by the method of lines,” J. Lightwave Technol. 8, 42–50 (1990).
    [Crossref]
  10. O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1997).
  11. P. Daly, “Hybrid-mode analysis of microstrip by finite-element method,” IEEE Microwave Theory Tech. 19, 19–25 (1971).
    [Crossref]
  12. Z. Pantic, R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Microwave Theory Tech. 34, 1096–1103 (1986).
    [Crossref]
  13. B. M. A. Rahman, J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
    [Crossref]
  14. N. Anwar, S. S. A. Obayya, S. Haxha, C. Themistos, B. M. A. Rahman, K. T. V. Grattan, “The effect of fabrication parameters on a ridge Mach–Zender interferometric (MZI) modulator,” J. Lightwave Technol. 20, 826–833 (2002).
    [Crossref]
  15. X. Zhang, T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO3 optical modulator,” IEEE Microwave Theory Tech. 43, 523–528 (1995).
    [Crossref]
  16. J. C. Yi, S. H. Kim, S. S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822 (1990).
    [Crossref]
  17. K. G. Gopalakrishnan, K. B. William, B. H. Catherine, “Microwave-optical mixing in LiNbO3,” IEEE Microwave Theory Tech. 41, 2383–2391 (1993).
    [Crossref]

2002 (1)

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

1999 (2)

M. Koshiba, Y. Tsuji, M. Nishio, “Finite-element modeling of broad-band traveling-wave optical modulators,” IEEE Microwave Theory Tech. 47, 1627–1633 (1999).
[Crossref]

N. Dagli, “Wide-bandwidth laser and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
[Crossref]

1998 (1)

K. Noguchi, H. Miyazawa, O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. 34, 661–663 (1998).
[Crossref]

1995 (3)

O. Mitomi, K. Noguchi, H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulator with ridge structure,” IEEE Microwave Theory Tech. 43, 2203–2207 (1995).
[Crossref]

K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1169 (1995).
[Crossref]

X. Zhang, T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO3 optical modulator,” IEEE Microwave Theory Tech. 43, 523–528 (1995).
[Crossref]

1993 (1)

K. G. Gopalakrishnan, K. B. William, B. H. Catherine, “Microwave-optical mixing in LiNbO3,” IEEE Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

1992 (1)

T. Kitazawa, D. Polifko, H. Ogawa, “Analysis of CPW for LiNbO3 optical modulator by extended spectral-domain approach,” Microwave Guided Wave Lett. 2, 313–315 (1992).
[Crossref]

1990 (2)

A. G. Keen, M. J. Wale, M. I. Sobhy, A. J. Holden, “Quasi-static analysis of electrooptic modulators by the method of lines,” J. Lightwave Technol. 8, 42–50 (1990).
[Crossref]

J. C. Yi, S. H. Kim, S. S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822 (1990).
[Crossref]

1986 (1)

Z. Pantic, R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Microwave Theory Tech. 34, 1096–1103 (1986).
[Crossref]

1984 (1)

B. M. A. Rahman, J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
[Crossref]

1971 (1)

P. Daly, “Hybrid-mode analysis of microstrip by finite-element method,” IEEE Microwave Theory Tech. 19, 19–25 (1971).
[Crossref]

Anwar, N.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Catherine, B. H.

K. G. Gopalakrishnan, K. B. William, B. H. Catherine, “Microwave-optical mixing in LiNbO3,” IEEE Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Choi, S. S.

J. C. Yi, S. H. Kim, S. S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822 (1990).
[Crossref]

Dagli, N.

N. Dagli, “Wide-bandwidth laser and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
[Crossref]

Daly, P.

P. Daly, “Hybrid-mode analysis of microstrip by finite-element method,” IEEE Microwave Theory Tech. 19, 19–25 (1971).
[Crossref]

Davies, J. B.

B. M. A. Rahman, J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Gopalakrishnan, K. G.

K. G. Gopalakrishnan, K. B. William, B. H. Catherine, “Microwave-optical mixing in LiNbO3,” IEEE Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Grattan, K. T. V.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Haxha, S.

Holden, A. J.

A. G. Keen, M. J. Wale, M. I. Sobhy, A. J. Holden, “Quasi-static analysis of electrooptic modulators by the method of lines,” J. Lightwave Technol. 8, 42–50 (1990).
[Crossref]

Keen, A. G.

A. G. Keen, M. J. Wale, M. I. Sobhy, A. J. Holden, “Quasi-static analysis of electrooptic modulators by the method of lines,” J. Lightwave Technol. 8, 42–50 (1990).
[Crossref]

Kim, S. H.

J. C. Yi, S. H. Kim, S. S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822 (1990).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Kitazawa, T.

T. Kitazawa, D. Polifko, H. Ogawa, “Analysis of CPW for LiNbO3 optical modulator by extended spectral-domain approach,” Microwave Guided Wave Lett. 2, 313–315 (1992).
[Crossref]

Koshiba, M.

M. Koshiba, Y. Tsuji, M. Nishio, “Finite-element modeling of broad-band traveling-wave optical modulators,” IEEE Microwave Theory Tech. 47, 1627–1633 (1999).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Minakata, M.

M. Minakata, “Recent progress of 40-GHz high-speed LiNbO3 optical modulator,” in Active and Passive Optical Components for WDM Communication, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K. Okamato, eds., Proc. SPIE4532, 16–27 (2001).
[Crossref]

Mitomi, O.

K. Noguchi, H. Miyazawa, O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. 34, 661–663 (1998).
[Crossref]

O. Mitomi, K. Noguchi, H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulator with ridge structure,” IEEE Microwave Theory Tech. 43, 2203–2207 (1995).
[Crossref]

K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1169 (1995).
[Crossref]

Mittra, R.

Z. Pantic, R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Microwave Theory Tech. 34, 1096–1103 (1986).
[Crossref]

Miyazawa, H.

K. Noguchi, H. Miyazawa, O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. 34, 661–663 (1998).
[Crossref]

K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1169 (1995).
[Crossref]

O. Mitomi, K. Noguchi, H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulator with ridge structure,” IEEE Microwave Theory Tech. 43, 2203–2207 (1995).
[Crossref]

Miyoshi, T.

X. Zhang, T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO3 optical modulator,” IEEE Microwave Theory Tech. 43, 523–528 (1995).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Nishio, M.

M. Koshiba, Y. Tsuji, M. Nishio, “Finite-element modeling of broad-band traveling-wave optical modulators,” IEEE Microwave Theory Tech. 47, 1627–1633 (1999).
[Crossref]

Noguchi, K.

K. Noguchi, H. Miyazawa, O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. 34, 661–663 (1998).
[Crossref]

K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1169 (1995).
[Crossref]

O. Mitomi, K. Noguchi, H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulator with ridge structure,” IEEE Microwave Theory Tech. 43, 2203–2207 (1995).
[Crossref]

Obayya, S. S. A.

Ogawa, H.

T. Kitazawa, D. Polifko, H. Ogawa, “Analysis of CPW for LiNbO3 optical modulator by extended spectral-domain approach,” Microwave Guided Wave Lett. 2, 313–315 (1992).
[Crossref]

Pantic, Z.

Z. Pantic, R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Microwave Theory Tech. 34, 1096–1103 (1986).
[Crossref]

Polifko, D.

T. Kitazawa, D. Polifko, H. Ogawa, “Analysis of CPW for LiNbO3 optical modulator by extended spectral-domain approach,” Microwave Guided Wave Lett. 2, 313–315 (1992).
[Crossref]

Rahman, B. M. A.

Seki, S.

K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1169 (1995).
[Crossref]

Sobhy, M. I.

A. G. Keen, M. J. Wale, M. I. Sobhy, A. J. Holden, “Quasi-static analysis of electrooptic modulators by the method of lines,” J. Lightwave Technol. 8, 42–50 (1990).
[Crossref]

Taylor, R. L.

O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1997).

Themistos, C.

Tsuji, Y.

M. Koshiba, Y. Tsuji, M. Nishio, “Finite-element modeling of broad-band traveling-wave optical modulators,” IEEE Microwave Theory Tech. 47, 1627–1633 (1999).
[Crossref]

Wale, M. J.

A. G. Keen, M. J. Wale, M. I. Sobhy, A. J. Holden, “Quasi-static analysis of electrooptic modulators by the method of lines,” J. Lightwave Technol. 8, 42–50 (1990).
[Crossref]

William, K. B.

K. G. Gopalakrishnan, K. B. William, B. H. Catherine, “Microwave-optical mixing in LiNbO3,” IEEE Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Yi, J. C.

J. C. Yi, S. H. Kim, S. S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822 (1990).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Zhang, X.

X. Zhang, T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO3 optical modulator,” IEEE Microwave Theory Tech. 43, 523–528 (1995).
[Crossref]

Zienkiewicz, O. C.

O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1997).

Electron. Lett. (1)

K. Noguchi, H. Miyazawa, O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. 34, 661–663 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

IEEE Microwave Theory Tech. (6)

M. Koshiba, Y. Tsuji, M. Nishio, “Finite-element modeling of broad-band traveling-wave optical modulators,” IEEE Microwave Theory Tech. 47, 1627–1633 (1999).
[Crossref]

O. Mitomi, K. Noguchi, H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulator with ridge structure,” IEEE Microwave Theory Tech. 43, 2203–2207 (1995).
[Crossref]

P. Daly, “Hybrid-mode analysis of microstrip by finite-element method,” IEEE Microwave Theory Tech. 19, 19–25 (1971).
[Crossref]

Z. Pantic, R. Mittra, “Quasi-TEM analysis of microwave transmission lines by the finite-element method,” IEEE Microwave Theory Tech. 34, 1096–1103 (1986).
[Crossref]

X. Zhang, T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO3 optical modulator,” IEEE Microwave Theory Tech. 43, 523–528 (1995).
[Crossref]

K. G. Gopalakrishnan, K. B. William, B. H. Catherine, “Microwave-optical mixing in LiNbO3,” IEEE Microwave Theory Tech. 41, 2383–2391 (1993).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

N. Dagli, “Wide-bandwidth laser and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
[Crossref]

J. Lightwave Technol. (5)

K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1169 (1995).
[Crossref]

J. C. Yi, S. H. Kim, S. S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822 (1990).
[Crossref]

A. G. Keen, M. J. Wale, M. I. Sobhy, A. J. Holden, “Quasi-static analysis of electrooptic modulators by the method of lines,” J. Lightwave Technol. 8, 42–50 (1990).
[Crossref]

B. M. A. Rahman, J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
[Crossref]

N. Anwar, S. S. A. Obayya, S. Haxha, C. Themistos, B. M. A. Rahman, K. T. V. Grattan, “The effect of fabrication parameters on a ridge Mach–Zender interferometric (MZI) modulator,” J. Lightwave Technol. 20, 826–833 (2002).
[Crossref]

Microwave Guided Wave Lett. (1)

T. Kitazawa, D. Polifko, H. Ogawa, “Analysis of CPW for LiNbO3 optical modulator by extended spectral-domain approach,” Microwave Guided Wave Lett. 2, 313–315 (1992).
[Crossref]

Other (2)

M. Minakata, “Recent progress of 40-GHz high-speed LiNbO3 optical modulator,” in Active and Passive Optical Components for WDM Communication, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K. Okamato, eds., Proc. SPIE4532, 16–27 (2001).
[Crossref]

O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, London, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Variations of the product V π L as a function of the ridge depth, H, for two buffer-layer thicknesses, B, and the structure of the modulator.

Fig. 2
Fig. 2

Variations of V π L as a function of the buffer layer, for an electrode gap, G = 15 and 25 μm, for etched (H = 3 and 4 μm) and unetched (H = 0 μm) structures. Dashed line, results reported by Mitomi, for H = 3 μm.4

Fig. 3
Fig. 3

Variations of the product V π L with the electrode gap, G, for values of ridge depth, H = 0, 3, and 4 μm.

Fig. 4
Fig. 4

Variations of the product V π L with the width of center electrode, S, for a waveguide width, W = 8, 9, and 10 μm.

Fig. 5
Fig. 5

Variations of the microwave index, N m , the characteristic impedance, Z C as a function of the buffer layer, B, for an electrode gap, G = 20 and 25 μm, and for the ridge depth, H = 0 and 3 μm, when the electrode thickness, T = 5 μm.

Fig. 6
Fig. 6

Variations of conductor loss, α C , and dielectric loss, α d , with the buffer-layer thickness, B, normalized at 1 GHz, for an electrode gap, G = 20 and 25 μm, and for the ridge depth, H = 0 and 3 μm, when the electrode thickness, T = 5 μm.

Fig. 7
Fig. 7

Required electrode thickness, T, for achieving velocity matching, N m = 2.15, and the variations of the characteristic impedance, Z C , under this condition as a function of the buffer layer, B.

Fig. 8
Fig. 8

Variations of the conductor loss, α C and the dielectric loss, α d with the buffer-layer thickness, B, normalized at 1 GHz for an electrode gap, 20 and 25 μm, and for the ridge depth, 0 and 3 μm, under the velocity-matching condition.

Fig. 9
Fig. 9

Variations of the 3-dB optical bandwidth, with buffer-layer thickness, B, for different values of electrode thicknesses, T.

Fig. 10
Fig. 10

Variations of the 3-dB optical bandwidth and V π L for an etched structure, with buffer-layer thickness, B, and H = 3 μm when different parameters are taken into account.

Fig. 11
Fig. 11

Variations of the 3-dB optical bandwidth for etched and unetched structures, with the buffer-layer thickness, B, at a fixed voltage V = 5 V under the velocity-matching condition.

Fig. 12
Fig. 12

Variations of the 3-dB optical bandwidth with buffer-layer thickness, B, under velocity- and impedance-matching conditions.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

mf=1-S1S21+S2expj2u+-S1S2 exp-2ju-×expju+sin u+u++S2 exp-ju-sin u-u-,
u±=1c πfLNm±No-j 12 αL, S1=Z1-ZCZ1+ZC, S2=Z2-ZCZ2+ZC,
mf=exp-ju+sin u+u+.
Δf=6.84αCL2,
Δf=2cπ|No-Nm|L.
αf=αCf+αdf.
αd=αdL+αdS,
x2ϕx, yx2+y2ϕx, yy2=0,
C=1V0  nϕndl,
Nm= C/C01/2,
ZC=1cCC0.
αC=RS2Z0ZCZC0n,
αd=Pd2Po,

Metrics