Abstract

In the present study, the bandwidth of a photonic switch described previously [Appl. Opt. 37, 2296 (1998); Appl. Opt. 38, 3239 (1999)] is evaluated. First the optical bandwidth is evaluated for coupling between two fiber-core waveguides, in which the cores are embedded within the same cladding. Then the coupling bandwidth is determined for a fiber-core-to-slab-core waveguide, in which the cores are embedded within the same cladding. These bandwidths are then compared and contrasted with the bandwidths of the photonic switch, which consists of two fiber cores and a control waveguide. Two configurations of the photonic switch are considered: one in which the control waveguide is a fiber core and one in which the control waveguide is a slab core. For the photonic switch, the bandwidth characteristics are more complicated than for the coupled pairs, and these characteristics are discussed in detail.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Attard, “Modulation of coupling in a photonic switch by resonant coupling,” Appl. Opt. 37, 2296–2302 (1998).
    [CrossRef]
  2. A. E. Attard, “Analysis of an optically controlled photonic switch,” Appl. Opt. 38, 3239–3248 (1999).
    [CrossRef]
  3. BeamPROP, a product of RSoft, Inc., utilizes the finite-difference beam propagation technique for simulation, analogous to Huygens’ principle. The basics of the technique are found in Refs. 4 and 5.
  4. R. Scarmozzino, R. M. Osgood, “Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A 8, 724–731 (1991).
    [CrossRef]
  5. More-detailed information can be found in R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000), and references therein.
  6. B. Ortega, L. Dong, “Accurate tuning of mismatched twin-core fiber filters,” Opt. Lett. 23, 1277–1279 (1998).
    [CrossRef]
  7. J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
    [CrossRef]
  8. B. E. A. Saleh, M. C. Teich, Principles of Photonics (Wiley, New York, 1994), p. 284.
  9. D. Marcuse, Light Transmission Optics, 2nd ed. (Robert E. Krieger Publishing Company, Malabar, Fla., 1989), p. 429.
  10. Corning Glass, product information (Corning Glass, Corning, New York, December, 2001).
  11. Corning Glass, press release, 18March, and product information PI1036, April (Corning Glass, Corning, New York, 2002).
  12. J. D. Love, V. V. Steblina, “Highly broadband buried channel couplers,” Electron. Lett. 30, 1853–1855 (1994).
    [CrossRef]
  13. S. J. Hewitt, J. D. Love, V. V. Steblina, “Analysis and design of highly broadband planar evanescent couplers,” Opt. Quantum Electron. 26, 71–81 (1996).

2000

More-detailed information can be found in R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000), and references therein.

1999

1998

1996

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

S. J. Hewitt, J. D. Love, V. V. Steblina, “Analysis and design of highly broadband planar evanescent couplers,” Opt. Quantum Electron. 26, 71–81 (1996).

1994

J. D. Love, V. V. Steblina, “Highly broadband buried channel couplers,” Electron. Lett. 30, 1853–1855 (1994).
[CrossRef]

1991

Allen, P. M.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Arkwright, J. W.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Atkins, G. R.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Attard, A. E.

Chu, P. L.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Dong, L.

Gillhoff, B.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Gopinath, A.

More-detailed information can be found in R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000), and references therein.

Helfert, S.

More-detailed information can be found in R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000), and references therein.

Hewitt, S. J.

S. J. Hewitt, J. D. Love, V. V. Steblina, “Analysis and design of highly broadband planar evanescent couplers,” Opt. Quantum Electron. 26, 71–81 (1996).

Hewlett, S. J.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Love, J. D.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

S. J. Hewitt, J. D. Love, V. V. Steblina, “Analysis and design of highly broadband planar evanescent couplers,” Opt. Quantum Electron. 26, 71–81 (1996).

J. D. Love, V. V. Steblina, “Highly broadband buried channel couplers,” Electron. Lett. 30, 1853–1855 (1994).
[CrossRef]

Marcuse, D.

D. Marcuse, Light Transmission Optics, 2nd ed. (Robert E. Krieger Publishing Company, Malabar, Fla., 1989), p. 429.

Ortega, B.

Osgood, R. M.

Poole, S. B.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Pregla, R.

More-detailed information can be found in R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000), and references therein.

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Principles of Photonics (Wiley, New York, 1994), p. 284.

Scarmozzino, R.

More-detailed information can be found in R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000), and references therein.

R. Scarmozzino, R. M. Osgood, “Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A 8, 724–731 (1991).
[CrossRef]

Sceats, M. G.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Steblina, V. V.

S. J. Hewitt, J. D. Love, V. V. Steblina, “Analysis and design of highly broadband planar evanescent couplers,” Opt. Quantum Electron. 26, 71–81 (1996).

J. D. Love, V. V. Steblina, “Highly broadband buried channel couplers,” Electron. Lett. 30, 1853–1855 (1994).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Principles of Photonics (Wiley, New York, 1994), p. 284.

Thorncraft, D. A.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Whitbread, T. W.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Wu, B.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

Appl. Opt.

Electron. Lett.

J. D. Love, V. V. Steblina, “Highly broadband buried channel couplers,” Electron. Lett. 30, 1853–1855 (1994).
[CrossRef]

J. Lightwave Technol.

J. W. Arkwright, B. Gillhoff, S. J. Hewlett, J. D. Love, P. M. Allen, P. L. Chu, T. W. Whitbread, B. Wu, G. R. Atkins, S. B. Poole, M. G. Sceats, D. A. Thorncraft, “Optical-to-electrical wavelength demultiplexing detector: design, fabrication, and analysis,” J. Lightwave Technol. 14, 534–541 (1996).
[CrossRef]

J. Opt. Soc. Am. A

J. Sel. Top. Quantum Electron.

More-detailed information can be found in R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000), and references therein.

Opt. Lett.

Opt. Quantum Electron.

S. J. Hewitt, J. D. Love, V. V. Steblina, “Analysis and design of highly broadband planar evanescent couplers,” Opt. Quantum Electron. 26, 71–81 (1996).

Other

BeamPROP, a product of RSoft, Inc., utilizes the finite-difference beam propagation technique for simulation, analogous to Huygens’ principle. The basics of the technique are found in Refs. 4 and 5.

B. E. A. Saleh, M. C. Teich, Principles of Photonics (Wiley, New York, 1994), p. 284.

D. Marcuse, Light Transmission Optics, 2nd ed. (Robert E. Krieger Publishing Company, Malabar, Fla., 1989), p. 429.

Corning Glass, product information (Corning Glass, Corning, New York, December, 2001).

Corning Glass, press release, 18March, and product information PI1036, April (Corning Glass, Corning, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Arrangement of the photonic switch with a fiber control waveguide.

Fig. 2
Fig. 2

Arrangement of the photonic switch with a slab control waveguide.

Fig. 3
Fig. 3

Square of the propagation vector displayed as a linear function of the square of the slab index of refraction for a slab waveguide. The mode number is s. For a fiber waveguide a similar relation holds, where mode number s is replaced by m + l/2.

Fig. 4
Fig. 4

Coupling between two fibers in the LP0,1 mode. Symmetric cores with equal refractive indices. Filled circles, fiber A; open circles, fiber B. Resonance condition fiber pair, with n (fiber) = 1.460.

Fig. 5
Fig. 5

Coupling between two fibers. Fiber A is in the LP0,1 mode; fiber B is in the LP1,1 mode. This is an example of asymmetric core indices, for which there is resonant coupling between dissimilar modes.

Fig. 6
Fig. 6

Coupling between a fiber and a slab waveguide in the lowest modes. Slab index, 1.462.

Fig. 7
Fig. 7

Coupling between fiber A and fiber B when control fiber C is in β resonance. The surface-to-surface spacing between control fiber C and fiber B is 2 μm. The photonic switch is off.

Fig. 8
Fig. 8

Coupling between fiber A (filled circles) and Fiber B (open circles) when control fiber C is not in β resonance with fiber B (switch on, nonresonant).

Fig. 9
Fig. 9

Coupling between fiber A (filled circles) and Fiber B (open circles) when control fiber C is in β resonance but is in the LP1,1 mode (switch off, resonant).

Fig. 10
Fig. 10

Coupling between fiber A (filled circles) and fiber B (open circles) when control fiber C is not in β resonance (switch on, nonresonant). BW, bandwidth; BW = 150 nm.

Fig. 11
Fig. 11

Coupling between fiber A (filled circles), and fiber B (open circles) when control slab C is in β resonance (switch on, nonresonant). BW, bandwidth.

Fig. 12
Fig. 12

Coupling between fiber A (filled circles) and fiber B (open circles) when control slab C is in β resonance (switch off, resonant).

Fig. 13
Fig. 13

Coupling between fiber A (filled circles), and fiber B (open circles) when control fiber C is not in β resonance (switch on, nonresonant). BW, bandwidth.

Fig. 14
Fig. 14

Coupling between fiber A (filled circles) and fiber B (open circles) when control slab C is in β resonance at a high mode (switch off, resonant).

Fig. 15
Fig. 15

Coupling of power from fiber core A to fiber core B at a wavelength of 1.55 μm. Fiber core A has a diameter of 9 μm; fiber core B has the diameters shown.

Fig. 16
Fig. 16

Coupling of power from fiber core A to fiber core B at a wavelength of 1.55 μm. Fiber core A has a diameter of 9 μm; fiber core B has a diameter that varies from 9 - Delta to 9 + Delta over a 2-mm segment and alternates cyclically over the coupling length of 1.2 cm. Delta varies from 0 to 0.6 μm. (Conical segments: 9 - Delta μm to 9 + Delta μm).

Fig. 17
Fig. 17

Coupling of power from fiber core A to fiber core B. Fiber core A has a diameter of 9 μm; fiber core B has elliptic diameters that vary from 9 + Delta and 9 - Delta at one end of the segment to 9 - Delta and 9 + Delta at the other end of the 2-mm segment and alternates cyclically. Delta varies from 0 to 0.6 μm. (Elliptic segments; elliptic axes vary between a,b and a′, b′. Wavelength = 1.55).

Fig. 18
Fig. 18

Relative power in fiber B as a function of wavelength for uniform diameter of B, for conical segments in B, and for elliptic segments in B, as displayed in Figs. 15 17. [Uniform diameter of B (9 μm) and conical segments of B (8.5–9.5 μm) and elliptic segments of B (8.5 × 9.5 to 9.5 × 8.5). Black circles, uniformly round; white circles, conical segments; gray circles, elliptic segments.]

Tables (1)

Tables Icon

Table 1 Relative Power Levels in the Three-Fiber Configuration with Control Fiber C in β Resonance with Fiber Ba

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β2=kz2=ωc2 ns2-s2π2a2,
βlm2=nlm2 k02-m+l22π2a2, V  !,

Metrics