Abstract

A CCD-based bistatic lidar (CLidar) system has been developed and constructed to measure scattering in the atmospheric boundary layer. The system uses a CCD camera, wide-angle optics, and a laser. Imaging a vertical laser beam from the side allows high-altitude resolution in the boundary layer all the way to the ground. The dynamic range needed for the molecular signal is several orders of magnitude in the standard monostatic method, but only approximately 1 order of magnitude with the CLidar method. Other advantages of the Clidar method include low cost and simplicity. Observations at Mauna Loa Observatory, Hawaii, show excellent agreement with the modeled molecular-scattering signal. The scattering depends on angle (altitude) and the polarization plane of the laser.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
    [CrossRef] [PubMed]
  2. J. E. Barnes, D. J. Hofmann, “Variability in the stratospheric background aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 28, 2895–2898 (2001).
    [CrossRef]
  3. N. C. Parikh, J. A. Parikh, “Systematic tracking of boundary layer aerosols with laser radar,” Opt. Laser Technol. 34, (2), 177–185 (2002).
    [CrossRef]
  4. R. M. Measures, Laser Remote Sensing (Wiley Interscience, London, 1984).
  5. T. Halldorsson, J. Langerhoic, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
    [CrossRef] [PubMed]
  6. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
    [CrossRef] [PubMed]
  7. E. O. Hulbert, “Observations of a searchlight beam to an altitude of 28 kilometers,” J. Opt. Soc. Am. 27, 377–382 (1937).
    [CrossRef]
  8. L. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953).
    [CrossRef]
  9. J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 1. The remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229–235 (1982).
    [CrossRef]
  10. J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 2. The inverse problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 236–243 (1982).
    [CrossRef]
  11. K. Parameswaran, K. O. Rose, B. W. Krishna, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89D, 2541–2552 (1984).
    [CrossRef]
  12. P. C. S. Devera, P. E. Raj, “Remote sounding of aerosols in the lower atmosphere using a bistatic cw helium-neon lidar,” J. Aerosol Sci. 20(1), 37–44 (1989).
    [CrossRef]
  13. K. Meki, K. Yamaguchi, X. Li, Y. Saito, A. Nomura, “Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere,” Opt. Lett. 21, 1318–1320 (1996).
    [CrossRef] [PubMed]
  14. J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
    [CrossRef]
  15. T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1988).
  16. Cimel Electronique Paris, France; www.cimel.fr .
  17. Micropulse lidar, Science and Engineering Services Inc., Burtonsville, Md.; http://www.sesi-md.com/mplinfo.htm .
  18. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

2002

N. C. Parikh, J. A. Parikh, “Systematic tracking of boundary layer aerosols with laser radar,” Opt. Laser Technol. 34, (2), 177–185 (2002).
[CrossRef]

2001

J. E. Barnes, D. J. Hofmann, “Variability in the stratospheric background aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 28, 2895–2898 (2001).
[CrossRef]

1999

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

1996

1992

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

1989

P. C. S. Devera, P. E. Raj, “Remote sounding of aerosols in the lower atmosphere using a bistatic cw helium-neon lidar,” J. Aerosol Sci. 20(1), 37–44 (1989).
[CrossRef]

1988

T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1988).

1984

K. Parameswaran, K. O. Rose, B. W. Krishna, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89D, 2541–2552 (1984).
[CrossRef]

1982

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 1. The remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229–235 (1982).
[CrossRef]

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 2. The inverse problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 236–243 (1982).
[CrossRef]

1979

1978

1953

L. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953).
[CrossRef]

1937

Anderson, T. L.

T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1988).

Barnes, J. E.

J. E. Barnes, D. J. Hofmann, “Variability in the stratospheric background aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 28, 2895–2898 (2001).
[CrossRef]

Byrne, D. M.

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 1. The remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229–235 (1982).
[CrossRef]

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 2. The inverse problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 236–243 (1982).
[CrossRef]

Cess, R. D.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Charlson, R. J.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Coakley, J. A.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Devera, P. C. S.

P. C. S. Devera, P. E. Raj, “Remote sounding of aerosols in the lower atmosphere using a bistatic cw helium-neon lidar,” J. Aerosol Sci. 20(1), 37–44 (1989).
[CrossRef]

Elterman, L.

L. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953).
[CrossRef]

Hales, J. M.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Halldorsson, T.

Hansen, J. E.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Harms, J.

Herman, B. M.

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 1. The remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229–235 (1982).
[CrossRef]

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 2. The inverse problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 236–243 (1982).
[CrossRef]

Hofmann, D. J.

J. E. Barnes, D. J. Hofmann, “Variability in the stratospheric background aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 28, 2895–2898 (2001).
[CrossRef]

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Hulbert, E. O.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

Kawahara, T.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

Kobayashi, F.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

Krishna, B. W.

K. Parameswaran, K. O. Rose, B. W. Krishna, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89D, 2541–2552 (1984).
[CrossRef]

Kubota, Y.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

Langerhoic, J.

Li, X.

Lin, J.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley Interscience, London, 1984).

Meki, K.

Mishima, H.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

Morikawa, K.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

Nomura, A.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

K. Meki, K. Yamaguchi, X. Li, Y. Saito, A. Nomura, “Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere,” Opt. Lett. 21, 1318–1320 (1996).
[CrossRef] [PubMed]

Ogren, J. A.

T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1988).

Parameswaran, K.

K. Parameswaran, K. O. Rose, B. W. Krishna, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89D, 2541–2552 (1984).
[CrossRef]

Parikh, J. A.

N. C. Parikh, J. A. Parikh, “Systematic tracking of boundary layer aerosols with laser radar,” Opt. Laser Technol. 34, (2), 177–185 (2002).
[CrossRef]

Parikh, N. C.

N. C. Parikh, J. A. Parikh, “Systematic tracking of boundary layer aerosols with laser radar,” Opt. Laser Technol. 34, (2), 177–185 (2002).
[CrossRef]

Raj, P. E.

P. C. S. Devera, P. E. Raj, “Remote sounding of aerosols in the lower atmosphere using a bistatic cw helium-neon lidar,” J. Aerosol Sci. 20(1), 37–44 (1989).
[CrossRef]

Reagan, J. A.

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 1. The remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229–235 (1982).
[CrossRef]

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 2. The inverse problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 236–243 (1982).
[CrossRef]

Rose, K. O.

K. Parameswaran, K. O. Rose, B. W. Krishna, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89D, 2541–2552 (1984).
[CrossRef]

Saito, Y.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

K. Meki, K. Yamaguchi, X. Li, Y. Saito, A. Nomura, “Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere,” Opt. Lett. 21, 1318–1320 (1996).
[CrossRef] [PubMed]

Schwartz, S. E.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Yamaguchi, K.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

K. Meki, K. Yamaguchi, X. Li, Y. Saito, A. Nomura, “Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere,” Opt. Lett. 21, 1318–1320 (1996).
[CrossRef] [PubMed]

Aerosol Sci. Technol.

T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1988).

Appl. Opt.

Geophys. Res. Lett.

J. E. Barnes, D. J. Hofmann, “Variability in the stratospheric background aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 28, 2895–2898 (2001).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 1. The remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229–235 (1982).
[CrossRef]

J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 2. The inverse problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 236–243 (1982).
[CrossRef]

J. Aerosol Sci.

P. C. S. Devera, P. E. Raj, “Remote sounding of aerosols in the lower atmosphere using a bistatic cw helium-neon lidar,” J. Aerosol Sci. 20(1), 37–44 (1989).
[CrossRef]

J. Geophys. Res.

K. Parameswaran, K. O. Rose, B. W. Krishna, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89D, 2541–2552 (1984).
[CrossRef]

L. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953).
[CrossRef]

J. Opt. Soc. Am.

Opt. Laser Technol.

N. C. Parikh, J. A. Parikh, “Systematic tracking of boundary layer aerosols with laser radar,” Opt. Laser Technol. 34, (2), 177–185 (2002).
[CrossRef]

Opt. Lett.

Rev. Laser Eng.

J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999).
[CrossRef]

Science

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Other

R. M. Measures, Laser Remote Sensing (Wiley Interscience, London, 1984).

Cimel Electronique Paris, France; www.cimel.fr .

Micropulse lidar, Science and Engineering Services Inc., Burtonsville, Md.; http://www.sesi-md.com/mplinfo.htm .

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

CLidar geometry.

Fig. 2
Fig. 2

CLidar altitude resolution.

Fig. 3
Fig. 3

CLidar polarization geometry.

Fig. 4
Fig. 4

Comparison of CLidar and standard lidar signal ranges.

Fig. 5
Fig. 5

Laser beam and night sky at Mauna Loa (unfiltered image).

Fig. 6
Fig. 6

CCD camera.

Fig. 7
Fig. 7

Experimental CLidar results for molecular-scattering conditions in signal counts at each pixel altitude.

Fig. 8
Fig. 8

Experimental CLidar results for molecular-scattering conditions.

Tables (2)

Tables Icon

Table 1 Laser Specifications for the Spectra-Physics Nd:YAG Model GCR-6

Tables Icon

Table 2 CCD Camera Specifications (Texas Instruments TC237)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Er=K1ELATatmzTatmRβθ, ϕ, zdz/R2,
tan θ=-tan α=-D/z, z=-D/tan θ.
dz=-D -sec2 θ dθ/tan2 θ=Ddθ/sin2 θ=Dd θ/D2/R2, dz=R2dθ/D.
Er=K1ELATatmz TatmRβθ, zdθ/D,
Is=K2I0sin2 ϕ+cos2 θ cos2 ϕ,
Er=K3ELATatmzTatmRnz×sin2 ϕ + cos2 θ cos2 ϕdθ/D.

Metrics