Abstract

The essential information required for the analysis of Raman lidar water vapor and aerosol data acquired by use of a single laser wavelength is compiled here and in a companion paper [Appl. Opt. 42, 2593 (2003)]. Various details concerning the evaluation of the lidar equations when Raman scattering is measured are covered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. The full temperature dependence of the Rayleigh-Mie and Raman lidar equations are evaluated by use of a new form of the lidar equation where all the temperature dependence is carried in a single term. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature-dependent effect can reach 10% or more for narrowband Raman water-vapor measurements. Also, the calculation of atmospheric transmission, including the effects of depolarization, is examined carefully. Various formulations of Rayleigh cross-section determination commonly used in the lidar field are compared and reveal differences of as much as 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction with the Raman lidar technique is considered, as are several photon pulse pileup-correction techniques.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Melfi, D. N. Whiteman, R. A. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
    [CrossRef]
  2. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
    [CrossRef]
  3. A. J. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [CrossRef]
  4. D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Ocean. Tech. 16, 1062–1076 (1999).
    [CrossRef]
  5. D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
    [CrossRef]
  6. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef] [PubMed]
  7. J. Reichardt, S. Reichardt, M. Hess, T. J. McGee, “Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation,” J. Geophys. Res. 107, 4562–4573 (2002).
    [CrossRef]
  8. D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
    [CrossRef]
  9. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
    [CrossRef]
  10. B. B. Demoz, D.O’C. Starr, D. N. Whiteman, K. D. Evans, D. Hlavka, “Raman lidar detection of cloud base,” Geophys. Res. Lett. 27, 1899–1902 (2000).
    [CrossRef]
  11. D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 1. Seasonal cycle,” J. Geophys. Res. 106, 28567–28575 (2001).
    [CrossRef]
  12. D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
    [CrossRef]
  13. D. N. Whiteman, G. Schwemmer, T. Berkoff, H. Plotkin, L. Ramos-Izquierdo, G. Pappalardo, “Performance modeling of an airborne Raman water vapor lidar,” Appl. Opt. 40, 375–390 (2001).
    [CrossRef]
  14. S. H. Melfi, “Remote measurement of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
    [CrossRef] [PubMed]
  15. S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
    [CrossRef]
  16. G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
    [CrossRef]
  17. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]
  18. A. Ansmann, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  19. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
    [CrossRef]
  20. D. D. Turner, R. A. Ferrare, L. A. H. Brasseur, W. F. Feltz, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Tech. 19, 37–50 (2002).
    [CrossRef]
  21. J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.
  22. J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
    [CrossRef]
  23. C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1976).
    [CrossRef]
  24. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  25. Y. Arshinov, S. Bobrovnikov, “Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
    [CrossRef]
  26. J. A. Salzman, T. A. Coney, “Remote measurement of atmospheric temperatures by Raman lidar,” NASA Tech. Memo. TM X-68250 (NASA, Washington, D.C., 1973).
  27. G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Kreiger, Malabar, Fla., 1989).
  28. D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42, 2593–2608 (2003).
    [CrossRef] [PubMed]
  29. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980).
    [CrossRef] [PubMed]
  30. A. T. Young, “On the Rayleigh-scattering optical depth of the atmosphere,” J. Appl. Meteorol. 20, 328–330 (1980).
    [CrossRef]
  31. Rayleigh, “On the light from the sky, its polarization and color,”Philos. Mag. 41, 107–120, 274–279 (1871).
  32. Rayleigh, “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).
  33. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).
  34. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley-Interscience, New York, 1984).
  35. V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
    [CrossRef]
  36. G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
    [CrossRef] [PubMed]
  37. D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
    [CrossRef]
  38. D. N. Whiteman, G. E. Walrafen, W.-H. Yang, S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water using a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
    [CrossRef]
  39. M. Mitev, I. V. Grigorov, V. B. Simeonov, “Lidar measurement of atmospheric aerosol extinction profiles: a comparison between 2 techniques—Klett inversion and pure rotational Raman-scattering methods,” Appl. Opt. 31, 6469–6474 (1992).
    [CrossRef] [PubMed]
  40. W. S. Heaps, J. Burris, J. A. French, “Lidar technique for remote measurement of temperature by use of vibrational-rotational Raman spectroscopy,” Appl. Opt. 36, 9402–9405 (1997).
    [CrossRef]
  41. W. F. Murphy, “Ro-vibrational Raman-spectrum of water-vapor nu-2 and 2-nu-(2),” Mol. Phys. 33, 1701–1714 (1977).
    [CrossRef]
  42. W. F. Murphy, “Ro-vibrational Raman-spectrum of water-vapor nu-1 and nu-3,” Mol. Phys. 36, 727–732 (1978).
    [CrossRef]
  43. J. M. Fernendez-Sanchez, W. F. Murphy, “Raman-scattering cross sections and polarizability derivatives for H2S, D2S and HDS,” J. Mol. Spectrosc. 156, 431–443 (1992).
    [CrossRef]
  44. J. M. Fernendez-Sanchez, W. F. Murphy, “True and effective polarizability tensors for asymmetric-top molecules—the rotational Raman-spectra of H2S and D2S,” J. Mol. Spectrosc. 156, 444–460 (1992).
    [CrossRef]
  45. J. M. Fernandez, Instituta Estructura Matera, Consejo Superior de Investigaciones Científicas, Serrano 117, 28006, Madrid, Spain (personal communication, 1999).
  46. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  47. C-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
    [CrossRef]
  48. P. A. T. Haris, “Pure rotational Raman lidar for temperature measurements in the lower troposphere,” Ph.D. dissertation (Pennsylvania State University, State College, Pa., 1995).
  49. M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995).
  50. National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere, NOAA Doc. S/T 76-1562 (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).
  51. A. M. Bass, R. J. Paur, “Ultraviolet cross-sections of ozone. I. Measurements,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, C. S. Zerophos, A. Ghanzi, eds. (Reidel, Hingham, Mass., 1985).
    [CrossRef]
  52. Modtran 4 Radiative Transfer Code (U.S. Air Force Research Laboratory, Hanscom Air Force Base, Mass., 1999).
  53. D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
    [CrossRef]
  54. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [CrossRef] [PubMed]
  55. E. R. Peck, K. Reeder, “Dispersion of air,” J. Opt. Soc. Am. 62, 958–962 (1972).
    [CrossRef]
  56. R. M. Goody, Y. L. Yung, Atmospheric Radiation Theoretical Basis (Oxford U. Press, Oxford, 1989).
  57. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  58. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
    [CrossRef] [PubMed]
  59. R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
    [CrossRef]
  60. D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
    [CrossRef]
  61. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Doc. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  62. E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
    [CrossRef]
  63. S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
    [CrossRef]
  64. T. Eck, Aeronet Group, NASA/Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 2002).
  65. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1992).
  66. U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
    [CrossRef]
  67. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
    [CrossRef]
  68. T. N. Carlson, J. M. Prospero, “The large-scale movement of Saharan air outbreakes over the northern equatorial Atlantic,” J. Appl. Meteorol. 11, 283–297 (1972).
    [CrossRef]
  69. J. M. Prospero, R. A. Glaccum, R. T. Nees, “Atmospheric transport of soil dust from Africa to South America,” Nature 289, 570–572 (1981).
    [CrossRef]
  70. L. Schutz, R. Jaenicke, H. Pietrek, “Saharan dust transport over the North Atlantic Ocean,” Geol. Special Paper 186 (Geological Society of America, Boulder, Colo., 1981), pp. 87–100.
  71. A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106, 10335–10347 (2001).
    [CrossRef]
  72. O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
    [CrossRef]
  73. R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955).
  74. D. P. Donovan, J. A. Whiteway, A. I. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993).
    [CrossRef] [PubMed]

2003

2002

J. Reichardt, S. Reichardt, M. Hess, T. J. McGee, “Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation,” J. Geophys. Res. 107, 4562–4573 (2002).
[CrossRef]

D. D. Turner, R. A. Ferrare, L. A. H. Brasseur, W. F. Feltz, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Tech. 19, 37–50 (2002).
[CrossRef]

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

2001

A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106, 10335–10347 (2001).
[CrossRef]

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 1. Seasonal cycle,” J. Geophys. Res. 106, 28567–28575 (2001).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
[CrossRef]

D. N. Whiteman, G. Schwemmer, T. Berkoff, H. Plotkin, L. Ramos-Izquierdo, G. Pappalardo, “Performance modeling of an airborne Raman water vapor lidar,” Appl. Opt. 40, 375–390 (2001).
[CrossRef]

C-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
[CrossRef]

2000

A. J. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

B. B. Demoz, D.O’C. Starr, D. N. Whiteman, K. D. Evans, D. Hlavka, “Raman lidar detection of cloud base,” Geophys. Res. Lett. 27, 1899–1902 (2000).
[CrossRef]

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

1999

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Ocean. Tech. 16, 1062–1076 (1999).
[CrossRef]

D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
[CrossRef]

Y. Arshinov, S. Bobrovnikov, “Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
[CrossRef]

D. N. Whiteman, G. E. Walrafen, W.-H. Yang, S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water using a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
[CrossRef]

V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
[CrossRef]

1998

1997

1995

1993

1992

M. Mitev, I. V. Grigorov, V. B. Simeonov, “Lidar measurement of atmospheric aerosol extinction profiles: a comparison between 2 techniques—Klett inversion and pure rotational Raman-scattering methods,” Appl. Opt. 31, 6469–6474 (1992).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

J. M. Fernendez-Sanchez, W. F. Murphy, “Raman-scattering cross sections and polarizability derivatives for H2S, D2S and HDS,” J. Mol. Spectrosc. 156, 431–443 (1992).
[CrossRef]

J. M. Fernendez-Sanchez, W. F. Murphy, “True and effective polarizability tensors for asymmetric-top molecules—the rotational Raman-spectra of H2S and D2S,” J. Mol. Spectrosc. 156, 444–460 (1992).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

1990

1989

S. H. Melfi, D. N. Whiteman, R. A. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

1988

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

1985

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
[CrossRef]

1984

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[CrossRef]

1981

J. M. Prospero, R. A. Glaccum, R. T. Nees, “Atmospheric transport of soil dust from Africa to South America,” Nature 289, 570–572 (1981).
[CrossRef]

1980

A. T. Young, “On the Rayleigh-scattering optical depth of the atmosphere,” J. Appl. Meteorol. 20, 328–330 (1980).
[CrossRef]

A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980).
[CrossRef] [PubMed]

1978

W. F. Murphy, “Ro-vibrational Raman-spectrum of water-vapor nu-1 and nu-3,” Mol. Phys. 36, 727–732 (1978).
[CrossRef]

1977

W. F. Murphy, “Ro-vibrational Raman-spectrum of water-vapor nu-2 and 2-nu-(2),” Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

1976

1972

E. R. Peck, K. Reeder, “Dispersion of air,” J. Opt. Soc. Am. 62, 958–962 (1972).
[CrossRef]

T. N. Carlson, J. M. Prospero, “The large-scale movement of Saharan air outbreakes over the northern equatorial Atlantic,” J. Appl. Meteorol. 11, 283–297 (1972).
[CrossRef]

S. H. Melfi, “Remote measurement of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
[CrossRef] [PubMed]

1871

Rayleigh, “On the light from the sky, its polarization and color,”Philos. Mag. 41, 107–120, 274–279 (1871).

Rayleigh, “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).

Ackerman, T. P.

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

Althausen, D.

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 1. Seasonal cycle,” J. Geophys. Res. 106, 28567–28575 (2001).
[CrossRef]

Ancellet, G.

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

Ansmann, A.

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 1. Seasonal cycle,” J. Geophys. Res. 106, 28567–28575 (2001).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

A. Ansmann, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Arshinov, Y.

Avila, G.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

Baldasano, J.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Balis, D.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Bass, A. M.

A. M. Bass, R. J. Paur, “Ultraviolet cross-sections of ozone. I. Measurements,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, C. S. Zerophos, A. Ghanzi, eds. (Reidel, Hingham, Mass., 1985).
[CrossRef]

Bates, D. R.

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[CrossRef]

Behrendt, A. J.

Bergin, M. H.

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

Berkoff, T.

Bevington, P. R.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1992).

Bisson, S. E.

Blair, F. H.

Bobrovnikov, S.

Böckmann, C.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Born, M.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).

Bösenberg, J.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Brasseur, L. A. H.

D. D. Turner, R. A. Ferrare, L. A. H. Brasseur, W. F. Feltz, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Tech. 19, 37–50 (2002).
[CrossRef]

Bucholtz, A.

Burris, J.

Cacciani, M.

A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106, 10335–10347 (2001).
[CrossRef]

Cadirola, M.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

Calpini, B.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Carlson, T. N.

T. N. Carlson, J. M. Prospero, “The large-scale movement of Saharan air outbreakes over the northern equatorial Atlantic,” J. Appl. Meteorol. 11, 283–297 (1972).
[CrossRef]

Carswell, A. I.

Chaikovsky, A.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Charlock, T. P.

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

Chazette, P.

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

Clothiaux, E. E.

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
[CrossRef]

Comeron, A.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

Coney, T. A.

J. A. Salzman, T. A. Coney, “Remote measurement of atmospheric temperatures by Raman lidar,” NASA Tech. Memo. TM X-68250 (NASA, Washington, D.C., 1973).

Demoz, B.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

Demoz, B. B.

B. B. Demoz, D.O’C. Starr, D. N. Whiteman, K. D. Evans, D. Hlavka, “Raman lidar detection of cloud base,” Geophys. Res. Lett. 27, 1899–1902 (2000).
[CrossRef]

Di Iorio, T.

A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106, 10335–10347 (2001).
[CrossRef]

di Sarra, A.

A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106, 10335–10347 (2001).
[CrossRef]

Donovan, D. P.

Dubovik, O.

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Dulac, F.

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

Eck, T.

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

T. Eck, Aeronet Group, NASA/Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 2002).

Eloranta, E. W.

Evans, K. D.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

B. B. Demoz, D.O’C. Starr, D. N. Whiteman, K. D. Evans, D. Hlavka, “Raman lidar detection of cloud base,” Geophys. Res. Lett. 27, 1899–1902 (2000).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

Evans, R. D.

R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955).

Feltz, W.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

Feltz, W. F.

D. D. Turner, R. A. Ferrare, L. A. H. Brasseur, W. F. Feltz, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Tech. 19, 37–50 (2002).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Doc. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Fernandez, J. M.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

J. M. Fernandez, Instituta Estructura Matera, Consejo Superior de Investigaciones Científicas, Serrano 117, 28006, Madrid, Spain (personal communication, 1999).

Fernendez-Sanchez, J. M.

J. M. Fernendez-Sanchez, W. F. Murphy, “True and effective polarizability tensors for asymmetric-top molecules—the rotational Raman-spectra of H2S and D2S,” J. Mol. Spectrosc. 156, 444–460 (1992).
[CrossRef]

J. M. Fernendez-Sanchez, W. F. Murphy, “Raman-scattering cross sections and polarizability derivatives for H2S, D2S and HDS,” J. Mol. Spectrosc. 156, 431–443 (1992).
[CrossRef]

Ferrare, R. A.

D. D. Turner, R. A. Ferrare, L. A. H. Brasseur, W. F. Feltz, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Tech. 19, 37–50 (2002).
[CrossRef]

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. H. Melfi, D. N. Whiteman, R. A. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

Fiocco, G.

A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106, 10335–10347 (2001).
[CrossRef]

Flamant, P.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Franke, K.

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 1. Seasonal cycle,” J. Geophys. Res. 106, 28567–28575 (2001).
[CrossRef]

French, J. A.

Freudenthaler, V.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

Fuà, D.

A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106, 10335–10347 (2001).
[CrossRef]

Galani, E.

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

Glaccum, R. A.

J. M. Prospero, R. A. Glaccum, R. T. Nees, “Atmospheric transport of soil dust from Africa to South America,” Nature 289, 570–572 (1981).
[CrossRef]

Goldsmith, J. E. M.

D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Ocean. Tech. 16, 1062–1076 (1999).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

Goody, R. M.

R. M. Goody, Y. L. Yung, Atmospheric Radiation Theoretical Basis (Oxford U. Press, Oxford, 1989).

Grigorov, I. V.

Gutman, S. I.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

Håagård, A.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

Hågård, A.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Halthore, R. N.

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

Hamonou, E. P.

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

Haris, P. A. T.

P. A. T. Haris, “Pure rotational Raman lidar for temperature measurements in the lower troposphere,” Ph.D. dissertation (Pennsylvania State University, State College, Pa., 1995).

Hauchecorne, A.

Heaps, W. S.

Heintzenberg, J.

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 1. Seasonal cycle,” J. Geophys. Res. 106, 28567–28575 (2001).
[CrossRef]

Herzberg, G.

G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Kreiger, Malabar, Fla., 1989).

Hess, M.

J. Reichardt, S. Reichardt, M. Hess, T. J. McGee, “Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation,” J. Geophys. Res. 107, 4562–4573 (2002).
[CrossRef]

Hlavka, D.

B. B. Demoz, D.O’C. Starr, D. N. Whiteman, K. D. Evans, D. Hlavka, “Raman lidar detection of cloud base,” Geophys. Res. Lett. 27, 1899–1902 (2000).
[CrossRef]

Holben, B.

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Jaenicke, R.

L. Schutz, R. Jaenicke, H. Pietrek, “Saharan dust transport over the North Atlantic Ocean,” Geol. Special Paper 186 (Geological Society of America, Boulder, Colo., 1981), pp. 87–100.

Jedlovec, G. J.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

Kato, S.

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

Kaufman, Y.

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

King, M.

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Lahmann, W.

A. Ansmann, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Lapp, M.

Laulainen, N.

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

Leifer, R.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

Lenoble, J.

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

Mace, G. G.

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

Mate, B.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

Mattis, I.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

McGee, T. J.

J. Reichardt, S. Reichardt, M. Hess, T. J. McGee, “Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation,” J. Geophys. Res. 107, 4562–4573 (2002).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley-Interscience, New York, 1984).

Melfi, S. H.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

D. N. Whiteman, G. E. Walrafen, W.-H. Yang, S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water using a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
[CrossRef]

D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. H. Melfi, D. N. Whiteman, R. A. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
[CrossRef]

S. H. Melfi, “Remote measurement of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
[CrossRef] [PubMed]

Michaelis, W.

A. Ansmann, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

Michalsky, J.

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

Mitev, M.

Mitev, V.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Montero, S.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

Müller, D.

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 1. Seasonal cycle,” J. Geophys. Res. 106, 28567–28575 (2001).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
[CrossRef]

Murphy, W. F.

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

J. M. Fernendez-Sanchez, W. F. Murphy, “Raman-scattering cross sections and polarizability derivatives for H2S, D2S and HDS,” J. Mol. Spectrosc. 156, 431–443 (1992).
[CrossRef]

J. M. Fernendez-Sanchez, W. F. Murphy, “True and effective polarizability tensors for asymmetric-top molecules—the rotational Raman-spectra of H2S and D2S,” J. Mol. Spectrosc. 156, 444–460 (1992).
[CrossRef]

W. F. Murphy, “Ro-vibrational Raman-spectrum of water-vapor nu-1 and nu-3,” Mol. Phys. 36, 727–732 (1978).
[CrossRef]

W. F. Murphy, “Ro-vibrational Raman-spectrum of water-vapor nu-2 and 2-nu-(2),” Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

Nees, R. T.

J. M. Prospero, R. A. Glaccum, R. T. Nees, “Atmospheric transport of soil dust from Africa to South America,” Nature 289, 570–572 (1981).
[CrossRef]

Papayannis, A.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Pappalardo, G.

D. N. Whiteman, G. Schwemmer, T. Berkoff, H. Plotkin, L. Ramos-Izquierdo, G. Pappalardo, “Performance modeling of an airborne Raman water vapor lidar,” Appl. Opt. 40, 375–390 (2001).
[CrossRef]

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

Paur, R. J.

A. M. Bass, R. J. Paur, “Ultraviolet cross-sections of ozone. I. Measurements,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, C. S. Zerophos, A. Ghanzi, eds. (Reidel, Hingham, Mass., 1985).
[CrossRef]

Peck, E. R.

Pelon, J.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Penney, C. M.

Pepler, S. J.

Perrone, M.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

Pietrek, H.

L. Schutz, R. Jaenicke, H. Pietrek, “Saharan dust transport over the North Atlantic Ocean,” Geol. Special Paper 186 (Geological Society of America, Boulder, Colo., 1981), pp. 87–100.

Plotkin, H.

Prospero, J. M.

J. M. Prospero, R. A. Glaccum, R. T. Nees, “Atmospheric transport of soil dust from Africa to South America,” Nature 289, 570–572 (1981).
[CrossRef]

T. N. Carlson, J. M. Prospero, “The large-scale movement of Saharan air outbreakes over the northern equatorial Atlantic,” J. Appl. Meteorol. 11, 283–297 (1972).
[CrossRef]

Ramos-Izquierdo, L.

Rayleigh,

Rayleigh, “On the light from the sky, its polarization and color,”Philos. Mag. 41, 107–120, 274–279 (1871).

Rayleigh, “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).

Reeder, K.

Reichardt, J.

J. Reichardt, S. Reichardt, M. Hess, T. J. McGee, “Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation,” J. Geophys. Res. 107, 4562–4573 (2002).
[CrossRef]

A. J. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

Reichardt, S.

J. Reichardt, S. Reichardt, M. Hess, T. J. McGee, “Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation,” J. Geophys. Res. 107, 4562–4573 (2002).
[CrossRef]

Resendes, D.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Riebesell, M.

Robinson, D. K.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1992).

Russell, P. B.

R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
[CrossRef]

Salzman, J. A.

J. A. Salzman, T. A. Coney, “Remote measurement of atmospheric temperatures by Raman lidar,” NASA Tech. Memo. TM X-68250 (NASA, Washington, D.C., 1973).

Schmidlin, F. J.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

Schneider, J.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Schneider, X.

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

Schutz, L.

L. Schutz, R. Jaenicke, H. Pietrek, “Saharan dust transport over the North Atlantic Ocean,” Geol. Special Paper 186 (Geological Society of America, Boulder, Colo., 1981), pp. 87–100.

Schwemmer, G.

Schwemmer, G. K.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

She, C-Y.

Sherlock, V.

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Doc. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Simeonov, V. B.

Slutsker, I.

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Smirnnov, A.

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Spinelli, N.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

St. Peters, R. L.

Starr, D. O’C.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

Starr, D.O’C.

B. B. Demoz, D.O’C. Starr, D. N. Whiteman, K. D. Evans, D. Hlavka, “Raman lidar detection of cloud base,” Geophys. Res. Lett. 27, 1899–1902 (2000).
[CrossRef]

Tanre, D.

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

Tejeda, G.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

Thomas, L.

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Tobin, D.

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

Trickl, T.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Turner, D. D.

D. D. Turner, R. A. Ferrare, L. A. H. Brasseur, W. F. Feltz, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Tech. 19, 37–50 (2002).
[CrossRef]

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Ocean. Tech. 16, 1062–1076 (1999).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

Vaughan, G.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Verver, G.

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
[CrossRef]

Visconti, G.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Voss, E.

A. Ansmann, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Wagner, F.

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 1. Seasonal cycle,” J. Geophys. Res. 106, 28567–28575 (2001).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
[CrossRef]

Walrafen, G. E.

Walsh, N. W.

Wandinger, U.

Wareing, D. P.

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Weitkamp, C.

Whiteman, D.

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
[CrossRef]

Whiteman, D. N.

D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42, 2593–2608 (2003).
[CrossRef] [PubMed]

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

D. N. Whiteman, G. Schwemmer, T. Berkoff, H. Plotkin, L. Ramos-Izquierdo, G. Pappalardo, “Performance modeling of an airborne Raman water vapor lidar,” Appl. Opt. 40, 375–390 (2001).
[CrossRef]

B. B. Demoz, D.O’C. Starr, D. N. Whiteman, K. D. Evans, D. Hlavka, “Raman lidar detection of cloud base,” Geophys. Res. Lett. 27, 1899–1902 (2000).
[CrossRef]

D. N. Whiteman, G. E. Walrafen, W.-H. Yang, S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water using a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
[CrossRef]

D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
[CrossRef]

D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. H. Melfi, D. N. Whiteman, R. A. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

Whiteway, J. A.

Wiegner, M.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).

Yang, W.-H.

Young, A. T.

A. T. Young, “On the Rayleigh-scattering optical depth of the atmosphere,” J. Appl. Meteorol. 20, 328–330 (1980).
[CrossRef]

A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980).
[CrossRef] [PubMed]

Yung, Y. L.

R. M. Goody, Y. L. Yung, Atmospheric Radiation Theoretical Basis (Oxford U. Press, Oxford, 1989).

Appl. Opt.

S. H. Melfi, “Remote measurement of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
[CrossRef] [PubMed]

M. Mitev, I. V. Grigorov, V. B. Simeonov, “Lidar measurement of atmospheric aerosol extinction profiles: a comparison between 2 techniques—Klett inversion and pure rotational Raman-scattering methods,” Appl. Opt. 31, 6469–6474 (1992).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

D. P. Donovan, J. A. Whiteway, A. I. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993).
[CrossRef] [PubMed]

W. S. Heaps, J. Burris, J. A. French, “Lidar technique for remote measurement of temperature by use of vibrational-rotational Raman spectroscopy,” Appl. Opt. 36, 9402–9405 (1997).
[CrossRef]

E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
[CrossRef]

Y. Arshinov, S. Bobrovnikov, “Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules,” Appl. Opt. 38, 4635–4638 (1999).
[CrossRef]

A. J. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[CrossRef] [PubMed]

D. N. Whiteman, G. E. Walrafen, W.-H. Yang, S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water using a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
[CrossRef]

V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999).
[CrossRef]

D. N. Whiteman, G. Schwemmer, T. Berkoff, H. Plotkin, L. Ramos-Izquierdo, G. Pappalardo, “Performance modeling of an airborne Raman water vapor lidar,” Appl. Opt. 40, 375–390 (2001).
[CrossRef]

U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998).
[CrossRef]

C-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
[CrossRef]

D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42, 2593–2608 (2003).
[CrossRef] [PubMed]

A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980).
[CrossRef] [PubMed]

Appl. Phys. B

A. Ansmann, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Bull. Am. Meteorol. Soc.

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
[CrossRef]

Geophys. Res. Lett.

B. B. Demoz, D.O’C. Starr, D. N. Whiteman, K. D. Evans, D. Hlavka, “Raman lidar detection of cloud base,” Geophys. Res. Lett. 27, 1899–1902 (2000).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

J. Aerosol Sci.

J. Schneider, D. Balis, C. Böckmann, J. Bösenberg, B. Calpini, A. Chaikovsky, A. Comeron, P. Flamant, V. Freudenthaler, A. Håagård, I. Mattis, V. Mitev, A. Papayannis, G. Pappalardo, J. Pelon, M. Perrone, D. Resendes, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, “A European aerosol research lidar network to establish an aerosol climatology (EARLINET),” J. Aerosol Sci. 31, Suppl. 1, 592–593 (2000).
[CrossRef]

J. Appl. Meteorol.

A. T. Young, “On the Rayleigh-scattering optical depth of the atmosphere,” J. Appl. Meteorol. 20, 328–330 (1980).
[CrossRef]

T. N. Carlson, J. M. Prospero, “The large-scale movement of Saharan air outbreakes over the northern equatorial Atlantic,” J. Appl. Meteorol. 11, 283–297 (1972).
[CrossRef]

S. H. Melfi, D. N. Whiteman, R. A. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

J. Atmos. Ocean. Tech.

D. D. Turner, R. A. Ferrare, L. A. H. Brasseur, W. F. Feltz, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Tech. 19, 37–50 (2002).
[CrossRef]

D. D. Turner, J. E. M. Goldsmith, “Twenty-four-hour Raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Ocean. Tech. 16, 1062–1076 (1999).
[CrossRef]

J. Atmos. Sci.

O. Dubovik, B. Holben, T. Eck, A. Smirnnov, Y. Kaufman, M. King, D. Tanre, I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590–608 (2002).
[CrossRef]

J. Geophys. Res.

A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106, 10335–10347 (2001).
[CrossRef]

D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

J. Reichardt, S. Reichardt, M. Hess, T. J. McGee, “Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation,” J. Geophys. Res. 107, 4562–4573 (2002).
[CrossRef]

D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 1. Seasonal cycle,” J. Geophys. Res. 106, 28567–28575 (2001).
[CrossRef]

D. Müller, K. Franke, F. Wagner, D. Althausen, A. Ansmann, J. Heintzenberg, G. Verver, “Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar. 2. Case studies,” J. Geophys. Res. 106, 28577–28595 (2001).
[CrossRef]

E. P. Hamonou, P. Chazette, D. Balis, F. Dulac, X. Schneider, E. Galani, G. Ancellet, A. Papayannis, “Characterization of the vertical structure of Saharan dust export to the Mediterranean basin,” J. Geophys. Res. 104, 22257–22270 (1999).
[CrossRef]

S. Kato, M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, D. D. Turner, “A comparison of the aerosol thickness derived from ground-based and airborne measurements,” J. Geophys. Res. 105, 14701–14717 (2000).
[CrossRef]

J. Mol. Spectrosc.

J. M. Fernendez-Sanchez, W. F. Murphy, “Raman-scattering cross sections and polarizability derivatives for H2S, D2S and HDS,” J. Mol. Spectrosc. 156, 431–443 (1992).
[CrossRef]

J. M. Fernendez-Sanchez, W. F. Murphy, “True and effective polarizability tensors for asymmetric-top molecules—the rotational Raman-spectra of H2S and D2S,” J. Mol. Spectrosc. 156, 444–460 (1992).
[CrossRef]

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Mol. Phys.

W. F. Murphy, “Ro-vibrational Raman-spectrum of water-vapor nu-2 and 2-nu-(2),” Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

W. F. Murphy, “Ro-vibrational Raman-spectrum of water-vapor nu-1 and nu-3,” Mol. Phys. 36, 727–732 (1978).
[CrossRef]

Nature

J. M. Prospero, R. A. Glaccum, R. T. Nees, “Atmospheric transport of soil dust from Africa to South America,” Nature 289, 570–572 (1981).
[CrossRef]

Opt. Lett.

Philos. Mag.

Rayleigh, “On the light from the sky, its polarization and color,”Philos. Mag. 41, 107–120, 274–279 (1871).

Rayleigh, “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).

Planet. Space Sci.

D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–790 (1984).
[CrossRef]

Q. J. R. Meteorol. Soc.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Other

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley-Interscience, New York, 1984).

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: European Aerosol Research Lidar Network,” presented at the 20th International Laser Radar Conference, Vichy, France, 10–14 July 2000.

J. A. Salzman, T. A. Coney, “Remote measurement of atmospheric temperatures by Raman lidar,” NASA Tech. Memo. TM X-68250 (NASA, Washington, D.C., 1973).

G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Kreiger, Malabar, Fla., 1989).

R. M. Goody, Y. L. Yung, Atmospheric Radiation Theoretical Basis (Oxford U. Press, Oxford, 1989).

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Doc. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

T. Eck, Aeronet Group, NASA/Goddard Space Flight Center, Greenbelt, Md. 20771 (personal communication, 2002).

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1992).

R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
[CrossRef]

J. M. Fernandez, Instituta Estructura Matera, Consejo Superior de Investigaciones Científicas, Serrano 117, 28006, Madrid, Spain (personal communication, 1999).

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

P. A. T. Haris, “Pure rotational Raman lidar for temperature measurements in the lower troposphere,” Ph.D. dissertation (Pennsylvania State University, State College, Pa., 1995).

M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995).

National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere, NOAA Doc. S/T 76-1562 (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).

A. M. Bass, R. J. Paur, “Ultraviolet cross-sections of ozone. I. Measurements,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, C. S. Zerophos, A. Ghanzi, eds. (Reidel, Hingham, Mass., 1985).
[CrossRef]

Modtran 4 Radiative Transfer Code (U.S. Air Force Research Laboratory, Hanscom Air Force Base, Mass., 1999).

L. Schutz, R. Jaenicke, H. Pietrek, “Saharan dust transport over the North Atlantic Ocean,” Geol. Special Paper 186 (Geological Society of America, Boulder, Colo., 1981), pp. 87–100.

R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Raman scattering spectrum for the OH-stretch region of water vapor simulated with a 0.5-cm-1 resolution and at two temperatures, 200 and 295 K. Also shown is a representation of an ∼18-cm-1 (0.3 nm when it is excited at 354.7 nm) passband centered at 3654 cm-1 that can be used for detection of the water-vapor signal. The y axis is in arbitrary units.

Fig. 2
Fig. 2

Integral of the Raman differential backscatter cross section and transmission of the passband shown in Fig. 1. The transmitted intensity at 200 K is approximately 7% larger than at 300 K.

Fig. 3
Fig. 3

Ratio of transmitted intensities at 200 and 300 K for Rayleigh and Raman (water-vapor, nitrogen, and oxygen) passbands for widths up to 300 cm-1 (∼5 nm for excitation at 354.7 nm). The plot on the right presents the same data as on the left but with the vertical axis expanded for easier interpretation.

Fig. 4
Fig. 4

Ratios of transmitted intensities between 200 and 300 K for water-vapor passbands of various widths and center positions. The center positions are given in the legend in units of wave numbers. Referring to Table 2, a passband width of 50 cm-1 corresponds to ∼0.8 nm for excitation at 354.7 nm. The passband center positions in nanometers can be found in Table 3 at either 354.7 or 532.1 nm.

Fig. 5
Fig. 5

Temperature-dependent functions F R (r), F O (r), F N (r), and F H (r) that are needed for evaluating the Rayleigh-Mie and Raman lidar equations plotted as functions of altitude, assuming a U.S. Standard Atmosphere temperature profile. The bandwidths (given parenthetically in units of inverse centimeters) correspond to 0.3 and 2.0 nm for excitation by 354.7-nm radiation.

Fig. 6
Fig. 6

Ratio of two approximate formulations of total Rayleigh scattering cross section, with the full treatment shown in Eq. (12) as a reference. The effect of using a constant depolarization is shown by a solid curve. The effect of neglecting the King factor completely is shown by a dashed curve. Significant errors are produced by use of either of the approximate methods.

Fig. 7
Fig. 7

Ratio of two formulations of the Rayleigh backscatter coefficient, given by Eqs. (19) and (21), plotted from 250 to 1000 nm. The difference between the simple numerical formula and Eq. (19) increases to more than 10% at short wavelengths.

Fig. 8
Fig. 8

Aerosol extinction (at 351 nm) calculated from a 20-min summation of data from the night of 26 August 1998 at Andros Island, Bahamas. The sensitivity of the aerosol scaling parameter, k, is tested here.

Fig. 9
Fig. 9

Six synthetic aerosol extinction profiles created to test the influence of multiple scattering on measurements of aerosol extinction. Three are for use in the simulations of elevated dust layers; the other three are for simulation of boundary layer aerosols. The desert dust profiles are labeled DD(τ), where τ is the optical depth of the layer. The corresponding key for the boundary layer aerosols is BL.

Fig. 10
Fig. 10

Multiple scattering simulations for the boundary layer aerosol profiles shown in Fig. 9. Calculations with constant size aerosols assumed to be of 0.5-μm radius are shown at the left and of 2.0 μm radius are shown at the right. The error in extinction is plotted for high optical depth at the right.

Fig. 11
Fig. 11

Multiple scattering simulations for a layer of desert dust at 5–6 km. The mean particle size used is 3 μm, and three optical depths studied are 0.1, 0.25, and 0.5. The error in extinction is also plotted for the 0.5-optical depth case.

Fig. 12
Fig. 12

Probability of measuring n counts for a Poisson process characterized by a mean count rate of 40 counts per unit of time.

Fig. 13
Fig. 13

Comparison of paralyzable and nonparalyzable count corrections by use of a resolving time of 10 ns. The observed count rate of a paralyzable system tends toward zero with increasing true count rate. The observed count rate of a nonparalyzable system tends toward the maximum count rate as the real count rate increases. A perfect linear system is also represented.

Fig. 14
Fig. 14

Comparison of photon pulse pileup corrections for a range of resolving time values for a nonparalyzable count-correction procedure. The resolving time that yields the curve closest to a constant with altitude is chosen for later processing. For the high nitrogen channel shown here, the choice of a resolving time of 11 ns yields a pulse pileup correction that agrees with the low-intensity signal to within ∼1% for altitudes above ∼3 km.

Fig. 15
Fig. 15

Low- and high-channel nitrogen data are shown with and without the nonparalyzable count correction for a value of 11 ns for the dead time. The correction is apparent only above approximately 1 MHz, so the correction has much more effect on the high channel data.

Fig. 16
Fig. 16

Comparison of several methods of correcting for the effects of photon pulse pileup. The same nitrogen data treated in Fig. 15 are again analyzed here. The raw data (NoCorr) are shown along with nonparalyzable, paralyzable, and nonlinear corrections (NPCorr, ParCorr, and NLCorr, respectively). The low-channel data (Lo), normalized to the high count rate (in hertz), are also shown as an indication of the true count rate.

Tables (3)

Tables Icon

Table 1 Values of the Fx Factor for Various Lidar Passband Widths (FWHM) and at Different Temperaturesa

Tables Icon

Table 2 Conversion between Passbands Expressed in Wave Numbers and in Wavelengths at 354.7 or 532.1 cm

Tables Icon

Table 3 Conversion Table for Center Positions of Water-Vapor Passbands

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

PλL, r=OrP0λLAξλLNRrdσRλL, π/dΩ+βπaerλL, rr2exp-2 0r αλL, rdr,
PλX, r=OXrP0λLAξλXNXrdσXλL, π/dΩr2×exp-0rαλL, r+αλX, rdr,
PλL, ΔλR, r=ORrP0λLAΔλRNRrdσRλ, π, Tr/dΩξλdλ+βπaerλL, rξλLr2×exp-2 0r αλL, rdr.
PλL, ΔλX, r=OXrP0λLNXrA ΔλXdσXλ, π, Tr/dΩξλdλr2×exp-0rαλL, r+αλX, rdr,
ΔλHdσHλ, π, TdΩ ξλdλ=FHTdσHπdΩ ξλH,
FHT=ΔλHdσHλ, π, T/dΩξλdλdσHπ/dΩξλH.
PλL, ΔλR, r=ORrP0λLAξλLFRTrβπmolλL, r+βπaerλL, rr2exp-2 0r αλL, rdr,
PλL, ΔλX, r=OXrP0λLAξλXFXTrNXrdσXπ/dΩr2exp-0rαλL, r+αλX, rdr,
αλ, r=αaerr+i=1M Nirσiλ+ηiλ.
αλ, r=αaerr+i=1M Nirσiλ.
αλ, r=αaerr+Nairrσairλ
σλ=24π3ns2λ-12λ4Ns2ns2+22 FKλ,
nsλ=10-85791817238.0185-1/λ2+16790957.362-1/λ2+1,
FKλ=6+3ρ0tλ6-7ρ0tλ,
ρ0tλ=6λ45+7λ,
λ=3 αλ-αλαλ+2αλ.
βs=Nsσλ.
βmolλ, r=Nrσλ=βsλNrNs=βsλPrPsTsTr,
βamolθ, λ, r=βmolλ, r4π PRayθ, ρ0tλ,
PRayθ, ρ0tλ=322+ρ0tλ1+ρ0tλ+1-ρ0tλcos2 θ,
βπsimplerN, λ=N5.45550λnm4×10-28cm-1 sr-1,
αaerλL, r+αaerλN, r=ddrlnONrFNTrNNrr2PλN, r-αmolλL, r-αmolλN, r,
αaerλL, rαaerλN, r=λNλLkr,
αaerλL, r=d/drlnONrFNTrNNr/r2PλN, r-αmolλL, r-αmolλN, r1+λL/λNkr.
αaerλL, r=1ONrd/drONr+1/FNTd/drFNTr+1/NNrd/drNNr-1r2PλN, rd/drr2PλN, r-αmolλL, r-αmolλN, r1+λL/λNkr .
αλ3.91Rv550λnmk km-1,
r1r2αλL, r+αλN, rdr=lnONrFNTrNNrr2PλN, rr1r2-r1r2αmolλL, r+αmolλN, rdr =lnONr2FNTr2NNr2r12PλN, r1ONr1FNTr1NNr1r22PλN, r2-r1r2αmolλL, r+αmolλN, rdr.
σAerosolOD2σONr22ON2r2+σONr12ON2r1+σFN2Tr2FN2Tr2+σFN2Tr1FN2Tr1+σNNr22NN2r2+σNNr12NN2r1+σPλN,r22P2λN, r2+σPλN,r12P2λN, r1+2σMolecularOD2,
σAerosolOD2σNNr22NN2r2+σNNr12NN2r1+σPλN,r22P2λN, r2+σPλN,r12P2λN, r1+2σMolecularOD2.
σAerosolOD21PλN, r2+1PλN, r1+4 RadErr2,
Pn, μ=e-μμnn!,
Nmeasured=Nreal exp-τNreal,
Nmeasured=1-τNmeasuredNreal
Nreal=Nmeasured1-τNmeasured.
N=S exp-τdSPa+P1b2aτdS+P2b3aτdS22+P3b4aτdS33!+,

Metrics