Abstract

The authors have analyzed and evaluated a two-dimensional instruction set of parallel operation based on optical array logic (OAL), which is a digital optical computing paradigm, to clarify efficient composition of an optical computing system based on OAL. To evaluate parallel operation based on OAL, the authors have introduced new indices and evaluated a logical instruction set of various parallel operations with the indices, so that a guideline for composing a simple and efficient OAL computing system is clarified. Also, the authors have proposed the reduced operation kernel set correlation technique to perform parallel operations more efficiently by a simple OAL computing system. It has been clarified that the technique can reduce the required hardware necessary for an OAL computing system for efficient general-purpose processing.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, G. Eichmann, R. R. Alfano, “Optical computing using hybrid encoded shadow casting,” Appl. Opt. 25, 2636–2638 (1986).
    [CrossRef] [PubMed]
  2. M. A. Karim, A. A. S. Awwal, A. K. Cherri, “Polarization-encoded optical shadow-casting arithmetic-logic-unit design,” Appl. Opt. 26, 2720–2725 (1987).
    [CrossRef] [PubMed]
  3. K. S. Gudmundsson, A. A. S. Awwal, “Computer modeling of optical shadow-casting processor,” Opt. Laser Technol. 32, 443–456 (2000).
    [CrossRef]
  4. J. U. Ahmed, A. A. S. Awwal, “Polarization-encoded optical shadow-casting arithmetic-logic-unit design: separate and simultaneous output generation,” Appl. Opt. 31, 5622–5631 (1992).
    [CrossRef] [PubMed]
  5. V. Laude, P. Chavel, P. Réfrégier, “Implementation of arbitrary real-valued correlation filters for the shadow-casting in coherent correlator,” Appl. Opt. 35, 5267–5274 (1996).
    [CrossRef] [PubMed]
  6. K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
    [CrossRef] [PubMed]
  7. K.-H. Brenner, “New implementation of symbolic substitution logic,” Appl. Opt. 25, 3062–3064 (1986).
    [CrossRef]
  8. K.-H. Brenner, “Programmable optical processor based on symbolic substitution,” Appl. Opt. 25, 1687–1691 (1988).
    [CrossRef]
  9. K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and optical cellular logic processor design,” Comput. Vision Graph. Image Process. 45, 295–345 (1989).
    [CrossRef]
  10. K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
    [CrossRef] [PubMed]
  11. K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
    [CrossRef] [PubMed]
  12. M. Fukui, K. Kitayama, “Image logic algebra and its optical implementations,” Appl. Opt. 31, 581–591 (1992).
    [CrossRef] [PubMed]
  13. M. Fukui, K. Kitayama, “Applications of image-logic algebra: wire routing and numerical data processing,” Appl. Opt. 31, 4645–4656 (1992).
    [CrossRef] [PubMed]
  14. J. Tanida, Y. Ichioka, “Optical array processor using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983).
    [CrossRef]
  15. Y. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
    [CrossRef]
  16. J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams: Optical parallel digital image processing,” J. Opt. Soc. Am. A 2, 1237–1244 (1985).
    [CrossRef]
  17. J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams: parallel neighborhood operations and an architecture of an optical digital-computing system,” J. Opt. Soc. Am. A 2, 1245–1253 (1985).
    [CrossRef]
  18. J. Tanida, Y. Ichioka, “A paradigm for digital optical computing based on coded pattern processing,” Int. J. Opt. Comput. 1, 113–128 (1990).
  19. J. Tanida, Y. Ichioka, “OPALS: Optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
    [CrossRef] [PubMed]
  20. J. Tanida, Y. Ichioka, “Optical parallel array logic system. 2: a new system architecture without memory elements,” Appl. Opt. 25, 3751–3758 (1986).
    [CrossRef] [PubMed]
  21. J. Tanida, Y. Ichioka, “Modular components for optical array logic system,” Appl. Opt. 26, 3954–3960 (1987).
    [CrossRef] [PubMed]
  22. J. Tanida, Y. Ichioka, “Birefrigent encoding and multichannel reflective correlator for optical array logic,” Appl. Opt. 27, 3819–3823 (1988).
    [CrossRef] [PubMed]
  23. J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2520 (1990).
    [CrossRef]
  24. D. Miyazaki, J. Tanida, Y. Ichioka, “Construction of modularized OPALS using optoelectronic devices,” Jpn. J. Appl. Phys. 29, L1550–L1552 (1990).
    [CrossRef]
  25. D. Miyazaki, J. Tanida, Y. Ichioka, “Reflective correlator for optoelectronic integration of hybrid optical parallel array logic system,” Optik (Stuttgart) 89, 101–106 (1992).
  26. D. Miyazaki, S. Kakizaki, T. Konishi, Y. Ichioka, “Iterative processing on a hybrid optical parallel array logic system with a selectable coherent correlator,” Appl. Opt. 32, 3053–3058 (1993).
    [CrossRef] [PubMed]
  27. T. Konishi, J. Tanida, Y. Ichioka, “Pure optical parallel array logic system—an optical parallel computing architecture,” IEICE Trans. Electron. E77–C1, 30–34 (1994).
  28. J. Tanida, T. Konishi, Y. Ichioka, “P-OPALS: Pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
    [CrossRef]
  29. Y. Awatsuji, D. Miyazaki, J. Tanida, Y. Ichioka, “Overall operation of the hybrid-optical parallel array logic system 162 (H-OPALS162),” Opt. Rev. 1, 163–165 (1994).
    [CrossRef]
  30. Y. Awatsuji, N. Sakamoto, H. Utsuro, J. Tanida, Y. Ichioka, “Optical array logic network computing: design of a prototype system,” Opt. Rev. 4, 199–202 (1997).
    [CrossRef]
  31. M. Iwata, J. Tanida, Y. Ichioka, “Inference engine using optical array logic,” Jpn. J. Appl. Phys. 29, 1604–1609 (1990).
    [CrossRef]
  32. M. Iwata, J. Tanida, Y. Ichioka, “Inference engine for expert system by using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
    [CrossRef] [PubMed]
  33. M. Iwata, J. Tanida, Y. Ichioka, “Database management using optical array logic,” Appl. Opt. 32, 1987–1995 (1993).
    [CrossRef] [PubMed]
  34. J. Tanida, M. Fukui, Y. Ichioka, “Programming of optical array logic. 2: numerical data processing based on pattern logic,” Appl. Opt. 27, 2931–2939 (1988).
    [CrossRef] [PubMed]
  35. M. Fukui, J. Tanida, Y. Ichioka, “Flexible-structured computation based on optical array logic,” Appl. Opt. 29, 1604–1609 (1990).
    [CrossRef] [PubMed]
  36. S. Kakizaki, J. Tanida, Y. Ichioka, “Gray-image processing using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
    [CrossRef]
  37. J. Tanida, Y. Ichioka, “Programming of optical array logic. 1: image data processing,” Appl. Opt. 27, 2963–2930 (1988).
  38. J. Tanida, Y. Ichioka, “Discrete correlators using multiple imaging for digital optical computing,” Opt. Lett. 16, 599–601 (1991).
    [CrossRef] [PubMed]
  39. Y. Awatsuji, N. Nishimura, T. Kubota, “Optical array logic analyzer,” Opt. Mem. Neural Netw. 11, 145–154 (2002).
  40. Y. Awatsuji, J. Tanida, Y. Ichioka, “Evaluations of optical parallel discrete correlators,” Optics in Computing, Vol. 8, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), 49–51.
  41. K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Discrete correlation processor as a building core of a digital optical computing system: Architecture and optoelectronic embodiment,” Appl. Opt. 38, 7276–7281 (1999).
    [CrossRef]
  42. K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Prototype demonstration of discrete correlation processor-2 based on high-speed optical image steering for large-fan-out reconfigurable optical interconnection,” Opt. Rev. 8, 18–25 (2001).
    [CrossRef]
  43. B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
    [CrossRef]
  44. R. P. Blocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
    [CrossRef]
  45. S. Kawai, Y. Kouga, “Modified signed optical processor using computer generated hologram,” Appl. Opt. 31, 6193–6199 (1992).
    [CrossRef] [PubMed]
  46. T. Minemoto, T. Morimoto, N. Ohnishi, “Implementation of image processing algorithm and modified signed digit addition on a hybrid optical computing system,” Opt. Comput. Process. 3, 39–52 (1993).
  47. H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, “Optical implementation of systolic array processing,” Appl. Opt. 40, 86–90 (1990).
  48. H. T. Kung, “Why systolic architecture?,” IEEE Computer 15, 37–46 (1982).
    [CrossRef]
  49. S. Y. Kung, “On supercomputing with systolic/wavefront array processor,” Proc. IEEE 72, 867–884 (1984).
    [CrossRef]
  50. J. A. B. Fortes, B. W. Wah, “Systolic arrays—from concept to implementation,” IEEE Computer 20, 12–17 (1987).
    [CrossRef]
  51. N. J. Nilsson, Principles of artificial intelligence (Tioga Publishing Co., Palo Alto, Calif.1980).
  52. E. F. Codd, “A relational model of data for large shared data banks,” Commun. ACM 13, 377–387 (1970).
    [CrossRef]

2002 (1)

Y. Awatsuji, N. Nishimura, T. Kubota, “Optical array logic analyzer,” Opt. Mem. Neural Netw. 11, 145–154 (2002).

2001 (1)

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Prototype demonstration of discrete correlation processor-2 based on high-speed optical image steering for large-fan-out reconfigurable optical interconnection,” Opt. Rev. 8, 18–25 (2001).
[CrossRef]

2000 (1)

K. S. Gudmundsson, A. A. S. Awwal, “Computer modeling of optical shadow-casting processor,” Opt. Laser Technol. 32, 443–456 (2000).
[CrossRef]

1999 (1)

1997 (1)

Y. Awatsuji, N. Sakamoto, H. Utsuro, J. Tanida, Y. Ichioka, “Optical array logic network computing: design of a prototype system,” Opt. Rev. 4, 199–202 (1997).
[CrossRef]

1996 (1)

1994 (3)

T. Konishi, J. Tanida, Y. Ichioka, “Pure optical parallel array logic system—an optical parallel computing architecture,” IEICE Trans. Electron. E77–C1, 30–34 (1994).

J. Tanida, T. Konishi, Y. Ichioka, “P-OPALS: Pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

Y. Awatsuji, D. Miyazaki, J. Tanida, Y. Ichioka, “Overall operation of the hybrid-optical parallel array logic system 162 (H-OPALS162),” Opt. Rev. 1, 163–165 (1994).
[CrossRef]

1993 (4)

M. Iwata, J. Tanida, Y. Ichioka, “Database management using optical array logic,” Appl. Opt. 32, 1987–1995 (1993).
[CrossRef] [PubMed]

D. Miyazaki, S. Kakizaki, T. Konishi, Y. Ichioka, “Iterative processing on a hybrid optical parallel array logic system with a selectable coherent correlator,” Appl. Opt. 32, 3053–3058 (1993).
[CrossRef] [PubMed]

K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
[CrossRef] [PubMed]

T. Minemoto, T. Morimoto, N. Ohnishi, “Implementation of image processing algorithm and modified signed digit addition on a hybrid optical computing system,” Opt. Comput. Process. 3, 39–52 (1993).

1992 (7)

1991 (1)

1990 (6)

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, “Optical implementation of systolic array processing,” Appl. Opt. 40, 86–90 (1990).

M. Fukui, J. Tanida, Y. Ichioka, “Flexible-structured computation based on optical array logic,” Appl. Opt. 29, 1604–1609 (1990).
[CrossRef] [PubMed]

M. Iwata, J. Tanida, Y. Ichioka, “Inference engine using optical array logic,” Jpn. J. Appl. Phys. 29, 1604–1609 (1990).
[CrossRef]

J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2520 (1990).
[CrossRef]

D. Miyazaki, J. Tanida, Y. Ichioka, “Construction of modularized OPALS using optoelectronic devices,” Jpn. J. Appl. Phys. 29, L1550–L1552 (1990).
[CrossRef]

J. Tanida, Y. Ichioka, “A paradigm for digital optical computing based on coded pattern processing,” Int. J. Opt. Comput. 1, 113–128 (1990).

1989 (2)

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and optical cellular logic processor design,” Comput. Vision Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

1988 (4)

K.-H. Brenner, “Programmable optical processor based on symbolic substitution,” Appl. Opt. 25, 1687–1691 (1988).
[CrossRef]

J. Tanida, Y. Ichioka, “Birefrigent encoding and multichannel reflective correlator for optical array logic,” Appl. Opt. 27, 3819–3823 (1988).
[CrossRef] [PubMed]

J. Tanida, M. Fukui, Y. Ichioka, “Programming of optical array logic. 2: numerical data processing based on pattern logic,” Appl. Opt. 27, 2931–2939 (1988).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Programming of optical array logic. 1: image data processing,” Appl. Opt. 27, 2963–2930 (1988).

1987 (3)

1986 (7)

Y. Li, G. Eichmann, R. R. Alfano, “Optical computing using hybrid encoded shadow casting,” Appl. Opt. 25, 2636–2638 (1986).
[CrossRef] [PubMed]

K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
[CrossRef] [PubMed]

K.-H. Brenner, “New implementation of symbolic substitution logic,” Appl. Opt. 25, 3062–3064 (1986).
[CrossRef]

J. Tanida, Y. Ichioka, “OPALS: Optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Optical parallel array logic system. 2: a new system architecture without memory elements,” Appl. Opt. 25, 3751–3758 (1986).
[CrossRef] [PubMed]

B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
[CrossRef]

R. P. Blocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
[CrossRef]

1985 (2)

J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams: Optical parallel digital image processing,” J. Opt. Soc. Am. A 2, 1237–1244 (1985).
[CrossRef]

J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams: parallel neighborhood operations and an architecture of an optical digital-computing system,” J. Opt. Soc. Am. A 2, 1245–1253 (1985).
[CrossRef]

1984 (2)

Y. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
[CrossRef]

S. Y. Kung, “On supercomputing with systolic/wavefront array processor,” Proc. IEEE 72, 867–884 (1984).
[CrossRef]

1983 (1)

1982 (1)

H. T. Kung, “Why systolic architecture?,” IEEE Computer 15, 37–46 (1982).
[CrossRef]

1970 (1)

E. F. Codd, “A relational model of data for large shared data banks,” Commun. ACM 13, 377–387 (1970).
[CrossRef]

Ahmed, J. U.

Alfano, R. R.

Awatsuji, Y.

Y. Awatsuji, N. Nishimura, T. Kubota, “Optical array logic analyzer,” Opt. Mem. Neural Netw. 11, 145–154 (2002).

Y. Awatsuji, N. Sakamoto, H. Utsuro, J. Tanida, Y. Ichioka, “Optical array logic network computing: design of a prototype system,” Opt. Rev. 4, 199–202 (1997).
[CrossRef]

Y. Awatsuji, D. Miyazaki, J. Tanida, Y. Ichioka, “Overall operation of the hybrid-optical parallel array logic system 162 (H-OPALS162),” Opt. Rev. 1, 163–165 (1994).
[CrossRef]

Y. Awatsuji, J. Tanida, Y. Ichioka, “Evaluations of optical parallel discrete correlators,” Optics in Computing, Vol. 8, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), 49–51.

Awwal, A. A. S.

Blocker, R. P.

R. P. Blocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
[CrossRef]

Bocker, R. P.

B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
[CrossRef]

Brenner, K.-H.

K.-H. Brenner, “Programmable optical processor based on symbolic substitution,” Appl. Opt. 25, 1687–1691 (1988).
[CrossRef]

K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
[CrossRef] [PubMed]

K.-H. Brenner, “New implementation of symbolic substitution logic,” Appl. Opt. 25, 3062–3064 (1986).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, “Optical implementation of systolic array processing,” Appl. Opt. 40, 86–90 (1990).

Chavel, P.

V. Laude, P. Chavel, P. Réfrégier, “Implementation of arbitrary real-valued correlation filters for the shadow-casting in coherent correlator,” Appl. Opt. 35, 5267–5274 (1996).
[CrossRef] [PubMed]

K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
[CrossRef] [PubMed]

Cherri, A. K.

Codd, E. F.

E. F. Codd, “A relational model of data for large shared data banks,” Commun. ACM 13, 377–387 (1970).
[CrossRef]

Drake, B. L.

R. P. Blocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
[CrossRef]

B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
[CrossRef]

Eichmann, G.

Fortes, J. A. B.

J. A. B. Fortes, B. W. Wah, “Systolic arrays—from concept to implementation,” IEEE Computer 20, 12–17 (1987).
[CrossRef]

Foster, M. J.

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, “Optical implementation of systolic array processing,” Appl. Opt. 40, 86–90 (1990).

Fukui, M.

Glaser, I.

K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
[CrossRef] [PubMed]

Gudmundsson, K. S.

K. S. Gudmundsson, A. A. S. Awwal, “Computer modeling of optical shadow-casting processor,” Opt. Laser Technol. 32, 443–456 (2000).
[CrossRef]

Henderson, T. B.

R. P. Blocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
[CrossRef]

Horvitz, S.

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, “Optical implementation of systolic array processing,” Appl. Opt. 40, 86–90 (1990).

Huang, A.

Huang, K.-S.

K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
[CrossRef] [PubMed]

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and optical cellular logic processor design,” Comput. Vision Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

Ichioka, Y.

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Prototype demonstration of discrete correlation processor-2 based on high-speed optical image steering for large-fan-out reconfigurable optical interconnection,” Opt. Rev. 8, 18–25 (2001).
[CrossRef]

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Discrete correlation processor as a building core of a digital optical computing system: Architecture and optoelectronic embodiment,” Appl. Opt. 38, 7276–7281 (1999).
[CrossRef]

Y. Awatsuji, N. Sakamoto, H. Utsuro, J. Tanida, Y. Ichioka, “Optical array logic network computing: design of a prototype system,” Opt. Rev. 4, 199–202 (1997).
[CrossRef]

J. Tanida, T. Konishi, Y. Ichioka, “P-OPALS: Pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

Y. Awatsuji, D. Miyazaki, J. Tanida, Y. Ichioka, “Overall operation of the hybrid-optical parallel array logic system 162 (H-OPALS162),” Opt. Rev. 1, 163–165 (1994).
[CrossRef]

T. Konishi, J. Tanida, Y. Ichioka, “Pure optical parallel array logic system—an optical parallel computing architecture,” IEICE Trans. Electron. E77–C1, 30–34 (1994).

D. Miyazaki, S. Kakizaki, T. Konishi, Y. Ichioka, “Iterative processing on a hybrid optical parallel array logic system with a selectable coherent correlator,” Appl. Opt. 32, 3053–3058 (1993).
[CrossRef] [PubMed]

M. Iwata, J. Tanida, Y. Ichioka, “Database management using optical array logic,” Appl. Opt. 32, 1987–1995 (1993).
[CrossRef] [PubMed]

M. Iwata, J. Tanida, Y. Ichioka, “Inference engine for expert system by using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
[CrossRef] [PubMed]

S. Kakizaki, J. Tanida, Y. Ichioka, “Gray-image processing using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
[CrossRef]

D. Miyazaki, J. Tanida, Y. Ichioka, “Reflective correlator for optoelectronic integration of hybrid optical parallel array logic system,” Optik (Stuttgart) 89, 101–106 (1992).

J. Tanida, Y. Ichioka, “Discrete correlators using multiple imaging for digital optical computing,” Opt. Lett. 16, 599–601 (1991).
[CrossRef] [PubMed]

M. Fukui, J. Tanida, Y. Ichioka, “Flexible-structured computation based on optical array logic,” Appl. Opt. 29, 1604–1609 (1990).
[CrossRef] [PubMed]

M. Iwata, J. Tanida, Y. Ichioka, “Inference engine using optical array logic,” Jpn. J. Appl. Phys. 29, 1604–1609 (1990).
[CrossRef]

J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2520 (1990).
[CrossRef]

D. Miyazaki, J. Tanida, Y. Ichioka, “Construction of modularized OPALS using optoelectronic devices,” Jpn. J. Appl. Phys. 29, L1550–L1552 (1990).
[CrossRef]

J. Tanida, Y. Ichioka, “A paradigm for digital optical computing based on coded pattern processing,” Int. J. Opt. Comput. 1, 113–128 (1990).

J. Tanida, Y. Ichioka, “Birefrigent encoding and multichannel reflective correlator for optical array logic,” Appl. Opt. 27, 3819–3823 (1988).
[CrossRef] [PubMed]

J. Tanida, M. Fukui, Y. Ichioka, “Programming of optical array logic. 2: numerical data processing based on pattern logic,” Appl. Opt. 27, 2931–2939 (1988).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Programming of optical array logic. 1: image data processing,” Appl. Opt. 27, 2963–2930 (1988).

J. Tanida, Y. Ichioka, “Modular components for optical array logic system,” Appl. Opt. 26, 3954–3960 (1987).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “OPALS: Optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Optical parallel array logic system. 2: a new system architecture without memory elements,” Appl. Opt. 25, 3751–3758 (1986).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams: parallel neighborhood operations and an architecture of an optical digital-computing system,” J. Opt. Soc. Am. A 2, 1245–1253 (1985).
[CrossRef]

J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams: Optical parallel digital image processing,” J. Opt. Soc. Am. A 2, 1237–1244 (1985).
[CrossRef]

Y. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
[CrossRef]

J. Tanida, Y. Ichioka, “Optical array processor using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983).
[CrossRef]

Y. Awatsuji, J. Tanida, Y. Ichioka, “Evaluations of optical parallel discrete correlators,” Optics in Computing, Vol. 8, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), 49–51.

Iwata, M.

Jenkins, B. K.

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and optical cellular logic processor design,” Comput. Vision Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

Kagawa, K.

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Prototype demonstration of discrete correlation processor-2 based on high-speed optical image steering for large-fan-out reconfigurable optical interconnection,” Opt. Rev. 8, 18–25 (2001).
[CrossRef]

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Discrete correlation processor as a building core of a digital optical computing system: Architecture and optoelectronic embodiment,” Appl. Opt. 38, 7276–7281 (1999).
[CrossRef]

Kakizaki, S.

Karim, M. A.

Kawai, S.

Kitayama, K.

M. Fukui, K. Kitayama, “Applications of image-logic algebra: wire routing and numerical data processing,” Appl. Opt. 31, 4645–4656 (1992).
[CrossRef] [PubMed]

M. Fukui, K. Kitayama, “Image logic algebra and its optical implementations,” Appl. Opt. 31, 581–591 (1992).
[CrossRef] [PubMed]

Konishi, T.

T. Konishi, J. Tanida, Y. Ichioka, “Pure optical parallel array logic system—an optical parallel computing architecture,” IEICE Trans. Electron. E77–C1, 30–34 (1994).

J. Tanida, T. Konishi, Y. Ichioka, “P-OPALS: Pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

D. Miyazaki, S. Kakizaki, T. Konishi, Y. Ichioka, “Iterative processing on a hybrid optical parallel array logic system with a selectable coherent correlator,” Appl. Opt. 32, 3053–3058 (1993).
[CrossRef] [PubMed]

Kouga, Y.

Kubota, T.

Y. Awatsuji, N. Nishimura, T. Kubota, “Optical array logic analyzer,” Opt. Mem. Neural Netw. 11, 145–154 (2002).

Kung, H. T.

H. T. Kung, “Why systolic architecture?,” IEEE Computer 15, 37–46 (1982).
[CrossRef]

Kung, S. Y.

S. Y. Kung, “On supercomputing with systolic/wavefront array processor,” Proc. IEEE 72, 867–884 (1984).
[CrossRef]

Lasher, M. E.

R. P. Blocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
[CrossRef]

B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
[CrossRef]

Laude, V.

Li, Y.

Miceli, W. J.

B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
[CrossRef]

Minemoto, T.

T. Minemoto, T. Morimoto, N. Ohnishi, “Implementation of image processing algorithm and modified signed digit addition on a hybrid optical computing system,” Opt. Comput. Process. 3, 39–52 (1993).

Miyazaki, D.

Y. Awatsuji, D. Miyazaki, J. Tanida, Y. Ichioka, “Overall operation of the hybrid-optical parallel array logic system 162 (H-OPALS162),” Opt. Rev. 1, 163–165 (1994).
[CrossRef]

D. Miyazaki, S. Kakizaki, T. Konishi, Y. Ichioka, “Iterative processing on a hybrid optical parallel array logic system with a selectable coherent correlator,” Appl. Opt. 32, 3053–3058 (1993).
[CrossRef] [PubMed]

D. Miyazaki, J. Tanida, Y. Ichioka, “Reflective correlator for optoelectronic integration of hybrid optical parallel array logic system,” Optik (Stuttgart) 89, 101–106 (1992).

D. Miyazaki, J. Tanida, Y. Ichioka, “Construction of modularized OPALS using optoelectronic devices,” Jpn. J. Appl. Phys. 29, L1550–L1552 (1990).
[CrossRef]

Morimoto, T.

T. Minemoto, T. Morimoto, N. Ohnishi, “Implementation of image processing algorithm and modified signed digit addition on a hybrid optical computing system,” Opt. Comput. Process. 3, 39–52 (1993).

Nakagawa, J.

Nilsson, N. J.

N. J. Nilsson, Principles of artificial intelligence (Tioga Publishing Co., Palo Alto, Calif.1980).

Nishimura, N.

Y. Awatsuji, N. Nishimura, T. Kubota, “Optical array logic analyzer,” Opt. Mem. Neural Netw. 11, 145–154 (2002).

Ogura, Y.

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Prototype demonstration of discrete correlation processor-2 based on high-speed optical image steering for large-fan-out reconfigurable optical interconnection,” Opt. Rev. 8, 18–25 (2001).
[CrossRef]

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Discrete correlation processor as a building core of a digital optical computing system: Architecture and optoelectronic embodiment,” Appl. Opt. 38, 7276–7281 (1999).
[CrossRef]

Ohnishi, N.

T. Minemoto, T. Morimoto, N. Ohnishi, “Implementation of image processing algorithm and modified signed digit addition on a hybrid optical computing system,” Opt. Comput. Process. 3, 39–52 (1993).

Patterson, R. H.

B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
[CrossRef]

Réfrégier, P.

Rhodes, W. T.

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, “Optical implementation of systolic array processing,” Appl. Opt. 40, 86–90 (1990).

Sakamoto, N.

Y. Awatsuji, N. Sakamoto, H. Utsuro, J. Tanida, Y. Ichioka, “Optical array logic network computing: design of a prototype system,” Opt. Rev. 4, 199–202 (1997).
[CrossRef]

Sawchuk, A. A.

K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
[CrossRef] [PubMed]

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and optical cellular logic processor design,” Comput. Vision Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

Streibl, N.

Tanida, J.

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Prototype demonstration of discrete correlation processor-2 based on high-speed optical image steering for large-fan-out reconfigurable optical interconnection,” Opt. Rev. 8, 18–25 (2001).
[CrossRef]

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Discrete correlation processor as a building core of a digital optical computing system: Architecture and optoelectronic embodiment,” Appl. Opt. 38, 7276–7281 (1999).
[CrossRef]

Y. Awatsuji, N. Sakamoto, H. Utsuro, J. Tanida, Y. Ichioka, “Optical array logic network computing: design of a prototype system,” Opt. Rev. 4, 199–202 (1997).
[CrossRef]

Y. Awatsuji, D. Miyazaki, J. Tanida, Y. Ichioka, “Overall operation of the hybrid-optical parallel array logic system 162 (H-OPALS162),” Opt. Rev. 1, 163–165 (1994).
[CrossRef]

T. Konishi, J. Tanida, Y. Ichioka, “Pure optical parallel array logic system—an optical parallel computing architecture,” IEICE Trans. Electron. E77–C1, 30–34 (1994).

J. Tanida, T. Konishi, Y. Ichioka, “P-OPALS: Pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

M. Iwata, J. Tanida, Y. Ichioka, “Database management using optical array logic,” Appl. Opt. 32, 1987–1995 (1993).
[CrossRef] [PubMed]

M. Iwata, J. Tanida, Y. Ichioka, “Inference engine for expert system by using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
[CrossRef] [PubMed]

S. Kakizaki, J. Tanida, Y. Ichioka, “Gray-image processing using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
[CrossRef]

D. Miyazaki, J. Tanida, Y. Ichioka, “Reflective correlator for optoelectronic integration of hybrid optical parallel array logic system,” Optik (Stuttgart) 89, 101–106 (1992).

J. Tanida, Y. Ichioka, “Discrete correlators using multiple imaging for digital optical computing,” Opt. Lett. 16, 599–601 (1991).
[CrossRef] [PubMed]

M. Fukui, J. Tanida, Y. Ichioka, “Flexible-structured computation based on optical array logic,” Appl. Opt. 29, 1604–1609 (1990).
[CrossRef] [PubMed]

M. Iwata, J. Tanida, Y. Ichioka, “Inference engine using optical array logic,” Jpn. J. Appl. Phys. 29, 1604–1609 (1990).
[CrossRef]

D. Miyazaki, J. Tanida, Y. Ichioka, “Construction of modularized OPALS using optoelectronic devices,” Jpn. J. Appl. Phys. 29, L1550–L1552 (1990).
[CrossRef]

J. Tanida, Y. Ichioka, “A paradigm for digital optical computing based on coded pattern processing,” Int. J. Opt. Comput. 1, 113–128 (1990).

J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2520 (1990).
[CrossRef]

J. Tanida, Y. Ichioka, “Birefrigent encoding and multichannel reflective correlator for optical array logic,” Appl. Opt. 27, 3819–3823 (1988).
[CrossRef] [PubMed]

J. Tanida, M. Fukui, Y. Ichioka, “Programming of optical array logic. 2: numerical data processing based on pattern logic,” Appl. Opt. 27, 2931–2939 (1988).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Programming of optical array logic. 1: image data processing,” Appl. Opt. 27, 2963–2930 (1988).

J. Tanida, Y. Ichioka, “Modular components for optical array logic system,” Appl. Opt. 26, 3954–3960 (1987).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Optical parallel array logic system. 2: a new system architecture without memory elements,” Appl. Opt. 25, 3751–3758 (1986).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “OPALS: Optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams: Optical parallel digital image processing,” J. Opt. Soc. Am. A 2, 1237–1244 (1985).
[CrossRef]

J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams: parallel neighborhood operations and an architecture of an optical digital-computing system,” J. Opt. Soc. Am. A 2, 1245–1253 (1985).
[CrossRef]

Y. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
[CrossRef]

J. Tanida, Y. Ichioka, “Optical array processor using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983).
[CrossRef]

Y. Awatsuji, J. Tanida, Y. Ichioka, “Evaluations of optical parallel discrete correlators,” Optics in Computing, Vol. 8, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), 49–51.

Utsuro, H.

Y. Awatsuji, N. Sakamoto, H. Utsuro, J. Tanida, Y. Ichioka, “Optical array logic network computing: design of a prototype system,” Opt. Rev. 4, 199–202 (1997).
[CrossRef]

Wah, B. W.

J. A. B. Fortes, B. W. Wah, “Systolic arrays—from concept to implementation,” IEEE Computer 20, 12–17 (1987).
[CrossRef]

Wang, C.-H.

K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
[CrossRef] [PubMed]

Wang, J.-M.

K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
[CrossRef] [PubMed]

Weber, A. G.

K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
[CrossRef] [PubMed]

Yagyu, E.

Appl. Opt. (4)

K.-S. Huang, A. A. Sawchuk, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): Experimental implementation,” Appl. Opt. 32, 166–173 (1993).
[CrossRef] [PubMed]

M. Fukui, K. Kitayama, “Applications of image-logic algebra: wire routing and numerical data processing,” Appl. Opt. 31, 4645–4656 (1992).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Optical parallel array logic system. 2: a new system architecture without memory elements,” Appl. Opt. 25, 3751–3758 (1986).
[CrossRef] [PubMed]

R. P. Blocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
[CrossRef]

Appl. Opt. (23)

S. Kawai, Y. Kouga, “Modified signed optical processor using computer generated hologram,” Appl. Opt. 31, 6193–6199 (1992).
[CrossRef] [PubMed]

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Discrete correlation processor as a building core of a digital optical computing system: Architecture and optoelectronic embodiment,” Appl. Opt. 38, 7276–7281 (1999).
[CrossRef]

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, “Optical implementation of systolic array processing,” Appl. Opt. 40, 86–90 (1990).

J. Tanida, Y. Ichioka, “Modular components for optical array logic system,” Appl. Opt. 26, 3954–3960 (1987).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “Birefrigent encoding and multichannel reflective correlator for optical array logic,” Appl. Opt. 27, 3819–3823 (1988).
[CrossRef] [PubMed]

J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2520 (1990).
[CrossRef]

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989).
[CrossRef] [PubMed]

M. Fukui, K. Kitayama, “Image logic algebra and its optical implementations,” Appl. Opt. 31, 581–591 (1992).
[CrossRef] [PubMed]

Y. Li, G. Eichmann, R. R. Alfano, “Optical computing using hybrid encoded shadow casting,” Appl. Opt. 25, 2636–2638 (1986).
[CrossRef] [PubMed]

M. A. Karim, A. A. S. Awwal, A. K. Cherri, “Polarization-encoded optical shadow-casting arithmetic-logic-unit design,” Appl. Opt. 26, 2720–2725 (1987).
[CrossRef] [PubMed]

J. U. Ahmed, A. A. S. Awwal, “Polarization-encoded optical shadow-casting arithmetic-logic-unit design: separate and simultaneous output generation,” Appl. Opt. 31, 5622–5631 (1992).
[CrossRef] [PubMed]

V. Laude, P. Chavel, P. Réfrégier, “Implementation of arbitrary real-valued correlation filters for the shadow-casting in coherent correlator,” Appl. Opt. 35, 5267–5274 (1996).
[CrossRef] [PubMed]

K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
[CrossRef] [PubMed]

K.-H. Brenner, “New implementation of symbolic substitution logic,” Appl. Opt. 25, 3062–3064 (1986).
[CrossRef]

K.-H. Brenner, “Programmable optical processor based on symbolic substitution,” Appl. Opt. 25, 1687–1691 (1988).
[CrossRef]

D. Miyazaki, S. Kakizaki, T. Konishi, Y. Ichioka, “Iterative processing on a hybrid optical parallel array logic system with a selectable coherent correlator,” Appl. Opt. 32, 3053–3058 (1993).
[CrossRef] [PubMed]

J. Tanida, Y. Ichioka, “OPALS: Optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
[CrossRef] [PubMed]

M. Iwata, J. Tanida, Y. Ichioka, “Inference engine for expert system by using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
[CrossRef] [PubMed]

M. Iwata, J. Tanida, Y. Ichioka, “Database management using optical array logic,” Appl. Opt. 32, 1987–1995 (1993).
[CrossRef] [PubMed]

J. Tanida, M. Fukui, Y. Ichioka, “Programming of optical array logic. 2: numerical data processing based on pattern logic,” Appl. Opt. 27, 2931–2939 (1988).
[CrossRef] [PubMed]

M. Fukui, J. Tanida, Y. Ichioka, “Flexible-structured computation based on optical array logic,” Appl. Opt. 29, 1604–1609 (1990).
[CrossRef] [PubMed]

S. Kakizaki, J. Tanida, Y. Ichioka, “Gray-image processing using optical array logic,” Appl. Opt. 31, 5604–5613 (1992).
[CrossRef]

J. Tanida, Y. Ichioka, “Programming of optical array logic. 1: image data processing,” Appl. Opt. 27, 2963–2930 (1988).

Commun. ACM (1)

E. F. Codd, “A relational model of data for large shared data banks,” Commun. ACM 13, 377–387 (1970).
[CrossRef]

Comput. Vision Graph. Image Process. (1)

K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and optical cellular logic processor design,” Comput. Vision Graph. Image Process. 45, 295–345 (1989).
[CrossRef]

IEEE Computer (2)

H. T. Kung, “Why systolic architecture?,” IEEE Computer 15, 37–46 (1982).
[CrossRef]

J. A. B. Fortes, B. W. Wah, “Systolic arrays—from concept to implementation,” IEEE Computer 20, 12–17 (1987).
[CrossRef]

IEICE Trans. Electron. (1)

T. Konishi, J. Tanida, Y. Ichioka, “Pure optical parallel array logic system—an optical parallel computing architecture,” IEICE Trans. Electron. E77–C1, 30–34 (1994).

Int. J. Opt. Comput. (1)

J. Tanida, Y. Ichioka, “A paradigm for digital optical computing based on coded pattern processing,” Int. J. Opt. Comput. 1, 113–128 (1990).

J. Opt. Soc. Am. A (1)

J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams: parallel neighborhood operations and an architecture of an optical digital-computing system,” J. Opt. Soc. Am. A 2, 1245–1253 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

D. Miyazaki, J. Tanida, Y. Ichioka, “Construction of modularized OPALS using optoelectronic devices,” Jpn. J. Appl. Phys. 29, L1550–L1552 (1990).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Iwata, J. Tanida, Y. Ichioka, “Inference engine using optical array logic,” Jpn. J. Appl. Phys. 29, 1604–1609 (1990).
[CrossRef]

Opt. Eng. (1)

B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
[CrossRef]

Opt. Rev. (1)

K. Kagawa, Y. Ogura, J. Tanida, Y. Ichioka, “Prototype demonstration of discrete correlation processor-2 based on high-speed optical image steering for large-fan-out reconfigurable optical interconnection,” Opt. Rev. 8, 18–25 (2001).
[CrossRef]

Opt. Comput. Process. (1)

T. Minemoto, T. Morimoto, N. Ohnishi, “Implementation of image processing algorithm and modified signed digit addition on a hybrid optical computing system,” Opt. Comput. Process. 3, 39–52 (1993).

Opt. Laser Technol. (1)

K. S. Gudmundsson, A. A. S. Awwal, “Computer modeling of optical shadow-casting processor,” Opt. Laser Technol. 32, 443–456 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Mem. Neural Netw. (1)

Y. Awatsuji, N. Nishimura, T. Kubota, “Optical array logic analyzer,” Opt. Mem. Neural Netw. 11, 145–154 (2002).

Opt. Rev. (2)

Y. Awatsuji, D. Miyazaki, J. Tanida, Y. Ichioka, “Overall operation of the hybrid-optical parallel array logic system 162 (H-OPALS162),” Opt. Rev. 1, 163–165 (1994).
[CrossRef]

Y. Awatsuji, N. Sakamoto, H. Utsuro, J. Tanida, Y. Ichioka, “Optical array logic network computing: design of a prototype system,” Opt. Rev. 4, 199–202 (1997).
[CrossRef]

Optik (Stuttgart) (1)

D. Miyazaki, J. Tanida, Y. Ichioka, “Reflective correlator for optoelectronic integration of hybrid optical parallel array logic system,” Optik (Stuttgart) 89, 101–106 (1992).

Proc. IEEE (3)

Y. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computing,” Proc. IEEE 72, 787–801 (1984).
[CrossRef]

J. Tanida, T. Konishi, Y. Ichioka, “P-OPALS: Pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
[CrossRef]

S. Y. Kung, “On supercomputing with systolic/wavefront array processor,” Proc. IEEE 72, 867–884 (1984).
[CrossRef]

Other (2)

N. J. Nilsson, Principles of artificial intelligence (Tioga Publishing Co., Palo Alto, Calif.1980).

Y. Awatsuji, J. Tanida, Y. Ichioka, “Evaluations of optical parallel discrete correlators,” Optics in Computing, Vol. 8, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), 49–51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Procedure of OAL.

Fig. 2
Fig. 2

Example of optical implementation of OAL: shadow-casting system.

Fig. 3
Fig. 3

Four possible notations describing the operation kernel: (a) most familiar notation of two-dimensional logical equation, (b) operation kernels that consist of a set of kernel units that describe a 2 by 2 lattice pattern, (c) kernel expression that is easy to understand intuitively. Origin kernel unit is signified by a netted zone. As an operation kernel corresponds to a logical function, an operation kernel can be written as a matrix-wise form by using a symbolic expression of the logical operation. The underscore, in general, indicates the origin of the neighborhood area. (d) OAL language.

Fig. 4
Fig. 4

Distribution of the total sum of NPUs for three operations in Type 1.

Fig. 5
Fig. 5

Distribution of the EPs of the total sum for three operations in Type 1.

Fig. 6
Fig. 6

Distribution of the total sum of NPUs for seven operations in Type 2.

Fig. 7
Fig. 7

Distribution of the EPs of the total sum for the seven operations in Type 2.

Fig. 8
Fig. 8

Distributions of the NPUs for 4-bit numerical operations: (a) RC multiplication, (b) MSD division.

Fig. 9
Fig. 9

Distributions of the NPUs for 8-bit numerical operations: (a) RC multiplication, (b) MSD division.

Fig. 10
Fig. 10

Distribution of the total sum of the NPUs for three operations in Type 3.

Fig. 11
Fig. 11

Distribution of the EPs of total sum for three operations in Type 3.

Fig. 12
Fig. 12

Principle of the ROSC technique. A complicated instruction of an operation kernel is decomposed into several simple instructions by using the ROSC technique.

Fig. 13
Fig. 13

Distributions of the NPUs for 8-bit numerical operations improved by the ROSC technique: (a) RC multiplication, (b) MSD division.

Fig. 14
Fig. 14

Efficient configuration of an operation kernel for the general-purpose OAL computing system. Gray zone indicates efficient two-dimensional pattern consisting of kernel units in a two-dimensional coordinate system. Black area at the center indicates the origin of the kernel unit in the coordinate system.

Fig. 15
Fig. 15

Efficient configuration of the operation kernel to which the ROSC is applied as the technique for a general-purpose OAL computing system.

Tables (3)

Tables Icon

Table 1 Correspondence between Logical Functions, Symbols in Kernel Expression, and Kernel Unit

Tables Icon

Table 2 Total Sum of the Number of Times Each Point Included in Restricted Area of the Operation Kernel Is Used

Tables Icon

Table 3 Performance Estimation for the OAL Operation with the ROSC Technique

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

EP i , j = NPU i , j n c .
AO = n p / n total ,
n total = l h l ν .
PTB = F a i , j ,   b i , j = n   f n a i , j ,   b i , j ,
PTB = F a i , j ,   b i , j = f 0 f 1 a i , j ,   b i , j = f 0     f 1 = f 0 f 1 f 2 a i , j ,   b i , j = f 0     f 1     f 2 = f 0     f 1     f 2     f n . f k = f k     f k + 1 k = 0.1.2 n - 1
PTB # 1 = 1 . 10 10 10 10 11 1 ¯ . 1 . 1 . 1 . 1 . 11 .
c ij = a i , j a i , j + 1 a i , j + 2 a i , j + 3 a i , j + 4 a i , j + 5 b i , j + 5 a i - 1 , j a i - 1 , j + 1 b i - 1 , j + 1 ¯ × a i - 1 , j + 2 b i - 1 , j + 2 ¯ a i - 1 , j + 3 b i - 1 , j + 3 ¯ a i - 1 , j + 4 b i - 1 , j + 4 ¯ × a i - 1 , j + 5 b i - 1 , j + 5 .
PTB # 2 = 1 . 10 10 1 ¯ . 1 . 1 . ,
PTB # 3 = . . . . . . 10 10 11 . . ¯ . . . . 1 . 1 . 11 .
PTB # 4 = 10 10 11 1 ¯ . 1 . 11 .
PTB # 5 = 1 . ¯   . .   . .   . 1 .
PTB # 1 = PTB # 2   AND   SHIFT PTB # 4 .
PTB # 6 = NN NN NN NN NN NN NN NN ¯ NN NN NN NN NN NN .
NN NN NN NN NN NN NN NN ¯ NN NN NN NN NN NN =   NN NN NN NN NN ¯ NN NN NN * 1 . ¯   1 .   1 .   1 .   = PTB # 7 * PTB # 8 .
PTB # 7 = NN NN NN NN NN ¯ NN NN NN .
PTB # 8 = 1 . ¯ 1 .   1 .   1 . .

Metrics