Abstract

Quantifying fluorescent compounds in turbid media such as tissue is made difficult by the effects of multiple scattering and absorption of the excitation and emission light. The approach that we used was to measure fluorescence using a single 200-µm optical fiber as both the illumination source and the detector. Fluorescence of aluminum phthalocyanine tetrasulfonate (AlPcS4) was measured over a wide range of fluorophore concentrations and optical properties in tissue-simulating phantoms. A root-mean-square accuracy of 10.6% in AlPcS4 concentration was attainable when fluorescence was measured either interstitially or at the phantom surface. The individual effects of scattering, absorption, and the scattering phase function on the fluorescence signal were also studied by experiments and Monte Carlo simulations.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
    [CrossRef] [PubMed]
  2. J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993).
    [PubMed]
  3. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
    [CrossRef] [PubMed]
  4. R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
    [CrossRef] [PubMed]
  5. T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
    [PubMed]
  6. M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
    [CrossRef] [PubMed]
  7. D. R. Braichotte, J. F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
    [CrossRef] [PubMed]
  8. R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
    [CrossRef] [PubMed]
  9. S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–179 (1993).
  10. M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source–detector separation,” Appl. Opt. 39, 6508–6514 (2000).
    [CrossRef]
  11. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl. Opt. 40, 6389–6395 (2001).
    [CrossRef]
  12. B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
    [CrossRef]
  13. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
    [CrossRef]
  14. C. P. Lowdell, D. V. Ash, I. Driver, S. B. Brown, “Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours,” Br. J. Cancer 67, 1398–1403 (1993).
    [CrossRef] [PubMed]
  15. J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994).
    [CrossRef]
  16. D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
    [CrossRef] [PubMed]
  17. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  18. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering of Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  19. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991), pp. 222–226.
  20. M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
    [CrossRef] [PubMed]
  21. F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999).
    [CrossRef]
  22. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  23. J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
    [CrossRef] [PubMed]
  24. C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
    [CrossRef] [PubMed]

2001 (4)

R. Weersink, M. S. Patterson, K. Diamond, S. Silver, N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl. Opt. 40, 6389–6395 (2001).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
[CrossRef] [PubMed]

2000 (3)

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source–detector separation,” Appl. Opt. 39, 6508–6514 (2000).
[CrossRef]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (3)

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
[CrossRef]

1997 (1)

J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
[CrossRef] [PubMed]

1996 (1)

D. R. Braichotte, J. F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

1995 (1)

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

1993 (3)

J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993).
[PubMed]

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

C. P. Lowdell, D. V. Ash, I. Driver, S. B. Brown, “Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours,” Br. J. Cancer 67, 1398–1403 (1993).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1986 (1)

R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

1941 (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Aalders, M.

J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
[CrossRef] [PubMed]

Ash, D. V.

C. P. Lowdell, D. V. Ash, I. Driver, S. B. Brown, “Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours,” Br. J. Cancer 67, 1398–1403 (1993).
[CrossRef] [PubMed]

Ballini, J-P.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

Barnhill, M. A.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Bartholomew, L. R.

C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
[CrossRef] [PubMed]

Beek, J. F.

J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
[CrossRef] [PubMed]

Beiner, L. A.

R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Beuthan, J.

J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994).
[CrossRef]

Bevilacqua, F.

Blokland, P.

J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
[CrossRef] [PubMed]

Bocher, T.

J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994).
[CrossRef]

Braichotte, D. R.

D. R. Braichotte, J. F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Brown, S. B.

C. P. Lowdell, D. V. Ash, I. Driver, S. B. Brown, “Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours,” Br. J. Cancer 67, 1398–1403 (1993).
[CrossRef] [PubMed]

Bugaj, J. E.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Burke, G.

Burke, G. C.

C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
[CrossRef] [PubMed]

Burleigh, B. D.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Canpolat, M.

M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source–detector separation,” Appl. Opt. 39, 6508–6514 (2000).
[CrossRef]

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Chow, Y. F. A.

R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Depeursinge, C.

Deutsch, T. F.

J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993).
[PubMed]

Diamond, K.

Dorshow, R. B.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Driver, I.

C. P. Lowdell, D. V. Ash, I. Driver, S. B. Brown, “Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours,” Br. J. Cancer 67, 1398–1403 (1993).
[CrossRef] [PubMed]

Duncan, J. R.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Ediger, M. N.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

Farrell, T. J.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

Flotte, T. J.

J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993).
[PubMed]

Folli, S.

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Forrer, M.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

Frazier, D. L.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Frisoli, J. K.

J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993).
[PubMed]

Glanzmann, T.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Gofstein, G.

S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–179 (1993).

Greenstein, J. L.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Grosjean, P.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

Gurfinkel, M.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Gust, J. D.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Hadjur, C.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

Harb, W.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Hasan, T.

J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993).
[PubMed]

Hawrysz, D. J.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Henyey, L. G.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Hoopes, P. J.

C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
[CrossRef] [PubMed]

Hyde, D. E.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–179 (1993).

Johnson, M. A.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Jones, W. B.

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

Joseph, R.

S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–179 (1993).

Kennedy, J. C.

R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Koblinger, L.

I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991), pp. 222–226.

LaPlante, J-P.

R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Lee, C. C.

C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
[CrossRef] [PubMed]

Lim, C. K.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

Lowdell, C. P.

C. P. Lowdell, D. V. Ash, I. Driver, S. B. Brown, “Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours,” Br. J. Cancer 67, 1398–1403 (1993).
[CrossRef] [PubMed]

Lux, I.

I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991), pp. 222–226.

Mayer, R. H.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Minet, O.

J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994).
[CrossRef]

Moes, C. J. M.

Monnier, P.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

D. R. Braichotte, J. F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Moodie, K. L.

C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
[CrossRef] [PubMed]

Moore, A. L.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Moore, T. A.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Mourant, J. R.

M. Canpolat, J. R. Mourant, “Monitoring photosensitizer concentration by use of a fiber-optic probe with a small source–detector separation,” Appl. Opt. 39, 6508–6514 (2000).
[CrossRef]

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

Muggenburg, B.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Müller, G. J.

J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994).
[CrossRef]

Nikula, K.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Nishioka, N. S.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

O’Brien, S. F.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Overholt, B. F.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Padgett, N.

Pandey, R.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Panjehpour, M.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Patterson, M. S.

R. Weersink, M. S. Patterson, K. Diamond, S. Silver, N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl. Opt. 40, 6389–6395 (2001).
[CrossRef]

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

Pfefer, T. J.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

Pickering, J. W.

J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
[CrossRef] [PubMed]

Pogue, B. W.

C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
[CrossRef] [PubMed]

B. W. Pogue, G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998).
[CrossRef]

Posthumus, P.

J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
[CrossRef] [PubMed]

Pottier, R. H.

R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering of Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Ralston, W.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Reynolds, J. S.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Roggan, A.

J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994).
[CrossRef]

Savary, J. F.

D. R. Braichotte, J. F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

Savary, J-F.

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Schmitt, I.

J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994).
[CrossRef]

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993).
[PubMed]

Sevick-Muraca, E. M.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Silver, S.

Sneed, R. E.

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
[CrossRef] [PubMed]

Strawbridge, R. R.

C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
[CrossRef] [PubMed]

Tatman, D.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Thompson, A. B.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Troy, T. L.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Truscott, T. G.

R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

Tudor, E. G.

J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993).
[PubMed]

van den Bergh, H.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

van den Bergh, H. E.

D. R. Braichotte, J. F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

van Gemert, M. J. C.

J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering of Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

van Marle, J.

van Staveren, H. J.

Wagnières, G.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Weber, A.

J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994).
[CrossRef]

Weersink, R.

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Westermann, P.

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

Wilson, B. C.

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

Zellweger, M.

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

Appl. Opt. (4)

Astrophys. J. (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Br. J. Cancer (1)

C. P. Lowdell, D. V. Ash, I. Driver, S. B. Brown, “Interstitial photodynamic therapy. Clinical experience with diffusing fibres in the treatment of cutaneous and subcutaneous tumours,” Br. J. Cancer 67, 1398–1403 (1993).
[CrossRef] [PubMed]

Cancer Res. (1)

J. K. Frisoli, K. T. Schomacker, E. G. Tudor, T. J. Flotte, T. Hasan, T. F. Deutsch, “Pharmacokinetics of a fluorescent drug using laser-induced fluorescence,” Cancer Res. 53, 5954–5961 (1993).
[PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7, 1004–1012 (2001).
[CrossRef]

Int. J. Cancer (1)

D. R. Braichotte, J-F. Savary, T. Glanzmann, P. Westermann, S. Folli, G. Wagnières, P. Monnier, H. van den Bergh, “Clinical pharmacokinetic studies of tetra(meta-hydroxyphenyl)chlorin in squamous cell carcinoma by fluorescence spectroscopy at 2 wavelengths,” Int. J. Cancer 63, 198–204 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, W. B. Jones, “Noninvasive fluorescence detection of hepatic and renal function,” J. Biomed. Opt. 3, 340–345 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (2)

M. Panjehpour, R. E. Sneed, D. L. Frazier, M. A. Barnhill, S. F. O’Brien, W. Harb, B. F. Overholt, “Quantification of phthalocyanine concentration in rat tissue using laser-induced fluorescence spectroscopy,” Lasers Surg. Med. 13, 23–30 (1993).
[CrossRef] [PubMed]

D. R. Braichotte, J. F. Savary, P. Monnier, H. E. van den Bergh, “Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy,” Lasers Surg. Med. 19, 340–346 (1996).
[CrossRef] [PubMed]

Photochem. Photobiol. (4)

R. H. Pottier, Y. F. A. Chow, J-P. LaPlante, T. G. Truscott, J. C. Kennedy, L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44, 679–687 (1986).
[CrossRef] [PubMed]

T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosjean, M. Forrer, J-P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnières, “Pharmacokinetics of tetra(m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy,” Photochem. Photobiol. 67, 596–602 (1998).
[PubMed]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, P. J. Hoopes, “Comparison of photosensitizer (AlPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol. 74, 453–460 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol. (3)

J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. J. C. M. Sterenborg, M. J. C. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255–2261 (1997).
[CrossRef] [PubMed]

M. Canpolat, J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol. 45, 1127–1140 (2000).
[CrossRef] [PubMed]

D. E. Hyde, T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46, 369–383 (2001).
[CrossRef] [PubMed]

Other (3)

J. Beuthan, T. Bocher, O. Minet, A. Roggan, I. Schmitt, A. Weber, G. J. Müller, “Investigations concerning the determination of NADH concentrations using optical biopsy,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 147–156 (1994).
[CrossRef]

S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–179 (1993).

I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991), pp. 222–226.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental system. Fluorescence in a tissue-simulating phantom is excited and detected by use of a single 200-µm optical fiber. The broken lines represent the path of the detected fluorescence. The path of the excitation light is shown as a thick solid line.

Fig. 2
Fig. 2

Plots of fluorescence measured at 680 nm normalized to monitor intensity for three experiments in the (a) interstitial and (b) surface detection geometries. Symbols ○, □, and △ represent reduced scattering coefficients (0.6, 1.3, 2.5 mm-1) and the shading (open, gray, and black) represents the background absorption coefficients (0.001, 0.01, 0.1 mm-1). The solid line is the line of best fit to the entire data set. The standard error in the mean is smaller than the symbols.

Fig. 3
Fig. 3

Plots of Monte Carlo simulations of 680-nm AlPcS4 fluorescence for (a) interstitial and (b) surface detection geometries. Data have been scaled to the experimental signals for comparison purposes by use of a single scaling factor. Error bars are the standard error in the mean determined from three independent sets of simulations. Symbols and shading are the same as in Fig. 2.

Fig. 4
Fig. 4

Combined set of experimental data for interstitial (○) and surface (●) measurements. The solid line is the best fit to the entire data set.

Fig. 5
Fig. 5

Dependence of fluorescence signal on reduced scattering coefficient for (a) interstitial and (b) surface detection geometries. Monte Carlo simulations were scaled to the experimental signals for comparison. Error bars for the Monte Carlo are the standard error in the mean determined from five independent sets of simulations.

Fig. 6
Fig. 6

Dependence of fluorescence signal on background absorption coefficient for (a) interstitial and (b) surface detection geometries. Monte Carlo simulations were scaled to the experimental signals for comparison. Error bars for the Monte Carlo are the standard error in the mean determined from three independent sets of simulations.

Fig. 7
Fig. 7

Dependence of fluorescence signal on anisotropy parameter g estimated by Monte Carlo simulations by use of the Henyey–Greenstein scattering phase function. Data were plotted for μ s ′ = 0.6 mm-1 (○), μ s ′ = 2.5 mm-1 (△), μ s ′ = 1.4 mm-1 (□), and μ s ′ = 1.4 mm-1 by use of a Mie scattering phase function (■). Each point is normalized to g = 0.78 performed with a Henyey–Greenstein scattering phase function. Error bars are the standard error in the mean for five independent simulations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FPS=c1c21-exp-c2PS,

Metrics