Abstract

An Er:YAG laser light delivery system composed of a polymer-coated silver hollow waveguide and a quartz sealing cap has been developed for calculus fragmentation. Sealing caps with various distal-end geometries were fabricated, and the focusing effects of these caps for Er:YAG laser light were measured both in air and in water. Owing to the high power capability of the quartz sealing caps, a beam of Er:YAG laser light with an output energy of 200 mJ and a repetition rate of 10 Hz was successfully transmitted in saline solution by use of the system. Calculus fragmentation experiments conducted in vitro showed that the delivery system is suitable for medical applications in lithotripsy. We also found that the cap with a focusing effect is more effective in cutting calculi. The deterioration of the sealing caps after calculus fragmentation is also discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
    [CrossRef] [PubMed]
  2. K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
    [CrossRef]
  3. M. A. Bloch, S. L. Fedorovskii, A. M. Suslov, B. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, “In vitro lithotripsy with Er:Cr:YSGG lasers through fiber,” in Lasers in Urology, Gynecology, and General Surgery, C. J. Daly, W. S. Grundfest, D. E. Johnson, R. J. Lanzafame, R. W. Steiner, Y. Tadir, G. M. Watson, eds., Proc. SPIE1879, 182–185 (1993).
  4. H. Pratisto, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
    [CrossRef]
  5. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  6. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [CrossRef] [PubMed]
  7. I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
    [CrossRef] [PubMed]
  8. R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
    [CrossRef] [PubMed]
  9. Y. W. Shi, Y. Abe, Y. Matsuura, M. Miyagi, “Low loss smart hollow waveguides with new polymer coating material,” Opt. Laser Technol. 31, 135–140 (1999).
    [CrossRef]
  10. M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.
  11. S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41, 1251–1255 (2002).
    [CrossRef] [PubMed]
  12. K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
    [CrossRef]
  13. M. Miyagi, Y. Matsuura, Y. Abe, “Sealing-cap for hollow fiber terminal,” Japanese patent2000-219907 (21July2000).
  14. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, London, 1985), pp. 749–763.

2002

K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
[CrossRef]

S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41, 1251–1255 (2002).
[CrossRef] [PubMed]

2001

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

1999

Y. W. Shi, Y. Abe, Y. Matsuura, M. Miyagi, “Low loss smart hollow waveguides with new polymer coating material,” Opt. Laser Technol. 31, 135–140 (1999).
[CrossRef]

1996

1995

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

H. Pratisto, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

1993

1984

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Abe, Y.

K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
[CrossRef]

S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41, 1251–1255 (2002).
[CrossRef] [PubMed]

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

Y. W. Shi, Y. Abe, Y. Matsuura, M. Miyagi, “Low loss smart hollow waveguides with new polymer coating material,” Opt. Laser Technol. 31, 135–140 (1999).
[CrossRef]

M. Miyagi, Y. Matsuura, Y. Abe, “Sealing-cap for hollow fiber terminal,” Japanese patent2000-219907 (21July2000).

Bloch, M. A.

M. A. Bloch, S. L. Fedorovskii, A. M. Suslov, B. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, “In vitro lithotripsy with Er:Cr:YSGG lasers through fiber,” in Lasers in Urology, Gynecology, and General Surgery, C. J. Daly, W. S. Grundfest, D. E. Johnson, R. J. Lanzafame, R. W. Steiner, Y. Tadir, G. M. Watson, eds., Proc. SPIE1879, 182–185 (1993).

Cecconi, P. P.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Chan, K. F.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Choi, B.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Corbin, N. S.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Dror, J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Ertl, T.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Fedorovskii, S. L.

M. A. Bloch, S. L. Fedorovskii, A. M. Suslov, B. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, “In vitro lithotripsy with Er:Cr:YSGG lasers through fiber,” in Lasers in Urology, Gynecology, and General Surgery, C. J. Daly, W. S. Grundfest, D. E. Johnson, R. J. Lanzafame, R. W. Steiner, Y. Tadir, G. M. Watson, eds., Proc. SPIE1879, 182–185 (1993).

Frenz, M.

H. Pratisto, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

Gannot, I.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Glickman, R. D.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Groitoru, N.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Hammer, D. X.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Harrington, J. A.

Inberg, A.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Ith, M.

H. Pratisto, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

Iwai, K.

K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
[CrossRef]

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

Jansen, E. D.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Jelinkova, H.

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

Kamerer, A. D.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Kasai, T.

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Kozodoy, R. L.

Matsuura, Y.

K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
[CrossRef]

S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41, 1251–1255 (2002).
[CrossRef] [PubMed]

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

Y. W. Shi, Y. Abe, Y. Matsuura, M. Miyagi, “Low loss smart hollow waveguides with new polymer coating material,” Opt. Laser Technol. 31, 135–140 (1999).
[CrossRef]

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

M. Miyagi, Y. Matsuura, Y. Abe, “Sealing-cap for hollow fiber terminal,” Japanese patent2000-219907 (21July2000).

Mikhailov, B. A.

M. A. Bloch, S. L. Fedorovskii, A. M. Suslov, B. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, “In vitro lithotripsy with Er:Cr:YSGG lasers through fiber,” in Lasers in Urology, Gynecology, and General Surgery, C. J. Daly, W. S. Grundfest, D. E. Johnson, R. J. Lanzafame, R. W. Steiner, Y. Tadir, G. M. Watson, eds., Proc. SPIE1879, 182–185 (1993).

Miyagi, M.

S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41, 1251–1255 (2002).
[CrossRef] [PubMed]

K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
[CrossRef]

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

Y. W. Shi, Y. Abe, Y. Matsuura, M. Miyagi, “Low loss smart hollow waveguides with new polymer coating material,” Opt. Laser Technol. 31, 135–140 (1999).
[CrossRef]

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, Y. Matsuura, Y. Abe, “Sealing-cap for hollow fiber terminal,” Japanese patent2000-219907 (21July2000).

Mohri, S.

Muller, G. J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Nemec, M.

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

Ohishi, J.

K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
[CrossRef]

Okagami, Y.

K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
[CrossRef]

Pagkalinawan, A. T.

Pak, S. K.

M. A. Bloch, S. L. Fedorovskii, A. M. Suslov, B. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, “In vitro lithotripsy with Er:Cr:YSGG lasers through fiber,” in Lasers in Urology, Gynecology, and General Surgery, C. J. Daly, W. S. Grundfest, D. E. Johnson, R. J. Lanzafame, R. W. Steiner, Y. Tadir, G. M. Watson, eds., Proc. SPIE1879, 182–185 (1993).

Paska, J.

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

Pfefer, T. J.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Pratisto, H.

H. Pratisto, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

Schrunder, S.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Shcherbakov, I. A.

M. A. Bloch, S. L. Fedorovskii, A. M. Suslov, B. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, “In vitro lithotripsy with Er:Cr:YSGG lasers through fiber,” in Lasers in Urology, Gynecology, and General Surgery, C. J. Daly, W. S. Grundfest, D. E. Johnson, R. J. Lanzafame, R. W. Steiner, Y. Tadir, G. M. Watson, eds., Proc. SPIE1879, 182–185 (1993).

Shi, Y. W.

S. Mohri, T. Kasai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, “Optical properties of end-sealed hollow fibers,” Appl. Opt. 41, 1251–1255 (2002).
[CrossRef] [PubMed]

K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
[CrossRef]

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

Y. W. Shi, Y. Abe, Y. Matsuura, M. Miyagi, “Low loss smart hollow waveguides with new polymer coating material,” Opt. Laser Technol. 31, 135–140 (1999).
[CrossRef]

Sorg, B.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Sulc, J.

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

Suslov, A. M.

M. A. Bloch, S. L. Fedorovskii, A. M. Suslov, B. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, “In vitro lithotripsy with Er:Cr:YSGG lasers through fiber,” in Lasers in Urology, Gynecology, and General Surgery, C. J. Daly, W. S. Grundfest, D. E. Johnson, R. J. Lanzafame, R. W. Steiner, Y. Tadir, G. M. Watson, eds., Proc. SPIE1879, 182–185 (1993).

Teichman, J. M. H.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Tschepe, J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Vargas, G.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

Weber, H. P.

H. Pratisto, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

Welch, A. J.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

H. Pratisto, M. Ith, M. Frenz, H. P. Weber, “Infrared multiwavelength laser system for establishing surgical delivery path through water,” Appl. Phys. Lett. 67, 1963–1965 (1995).
[CrossRef]

Fine Mechanics Opt.

M. Nemec, H. Jelinkova, J. Sulc, J. Paska, M. Miyagi, Y. W. Shi, Y. Matsuura, Y. Abe, K. Iwai, “The delivery of mid-infrared laser radiation by sealed waveguides and their application in ophthalmology,” Fine Mechanics Opt. 6, 187–190 (2001), in Czech.

IEEE J. Sel. Top. Quantum Electron.

K. F. Chan, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Groitoru, “Flexible waveguide for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

J. Lightwave Technol.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Urol.

J. M. H. Teichman, K. F. Chan, P. P. Cecconi, N. S. Corbin, A. D. Kamerer, R. D. Glickman, A. J. Welch, “Erbium:YAG versus holmium:YAG lithotripsy,” J. Urol. 165, 876–879 (2001).
[CrossRef] [PubMed]

Opt. Laser Technol.

Y. W. Shi, Y. Abe, Y. Matsuura, M. Miyagi, “Low loss smart hollow waveguides with new polymer coating material,” Opt. Laser Technol. 31, 135–140 (1999).
[CrossRef]

Rev. Laser Eng.

K. Iwai, Y. Abe, Y. W. Shi, Y. Matsuura, M. Miyagi, J. Ohishi, Y. Okagami, “Fabrication of a rugged, polymer-coated hollow fiber for infrared transmission,” Rev. Laser Eng. 30, 255–258 (2002), in Japanese.
[CrossRef]

Other

M. Miyagi, Y. Matsuura, Y. Abe, “Sealing-cap for hollow fiber terminal,” Japanese patent2000-219907 (21July2000).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, London, 1985), pp. 749–763.

M. A. Bloch, S. L. Fedorovskii, A. M. Suslov, B. A. Mikhailov, S. K. Pak, I. A. Shcherbakov, “In vitro lithotripsy with Er:Cr:YSGG lasers through fiber,” in Lasers in Urology, Gynecology, and General Surgery, C. J. Daly, W. S. Grundfest, D. E. Johnson, R. J. Lanzafame, R. W. Steiner, Y. Tadir, G. M. Watson, eds., Proc. SPIE1879, 182–185 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Sealing caps with various distal-end shapes: (a) dome, (b) flat convex 1, (c) flat convex 2.

Fig. 2
Fig. 2

Focusing effect of sealing caps for Er:YAG laser light in air for dome, flat convex-1, and flat convex-2 sealing caps.

Fig. 3
Fig. 3

Shapes of vapor bubble channels for the (a) dome, (b) flat convex-1, (c) flat convex-2 caps.

Fig. 4
Fig. 4

Characteristics of the drilling effect on a Plexiglas plate in saline for (a) dome and (b) flat convex-2 sealing caps.

Fig. 5
Fig. 5

Cross-sectional pictures of a slot in a urinary calculus drilled by Er:YAG laser light with (a) a dome-shaped cap and (b) a flat convex-2 cap, where the output pulse energy was 160 mJ at a repetition rate of 10 Hz, and the irradiation lasted 3 min.

Fig. 6
Fig. 6

Er:YAG laser light delivery system for calculus fragmentation.

Fig. 7
Fig. 7

Renal calculus (a) before, (b) 17.5 min after, and (c) 30 min after irradiation with Er:YAG laser light with 200-mJ output energy.

Fig. 8
Fig. 8

End surface of sealing caps (a) before and (b) after irradiation of the urinary calculus with Er:YAG laser light.

Fig. 9
Fig. 9

Transmission loss of the caps as a function of delivery time.

Fig. 10
Fig. 10

Focusing effect of the flat convex-2 cap in air before and after Er:YAG laser light delivery.

Tables (1)

Tables Icon

Table 1 Characteristics of Sealing Caps with Various Distal-End Geometries

Metrics