Abstract

A miniature broadband light source is a critical element in a spectrophotometric microsystem. The design, fabrication, and characterization of a highly stable, miniature broadband light source that comprises filaments of single-crystal silicon are presented. Electrical current versus voltage and radiant emittance spectra under constant voltage bias are measured and related to filament dimensions. A maximum stable operating temperature for these filaments is estimated to be 1200 K. Resistance drift is demonstrated to be less than 0.5% over a 10-h period of continuous operation with visible incandescence. Emittance spectra of a multifilament array, measured at three different electrical biases, are presented and shown to compare well with theoretical blackbody radiation spectra. A continuous, total radiated power of 10.7 mW was achieved with a 1 mm × 1 mm filament array with peak emittance at λ = 2.7 µm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Szymanski, IR Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964).
    [CrossRef]
  2. R. T. Conley, Infrared Spectroscopy, 2nd ed. (Allyn and Bacon, Boston, Mass., 1972).
  3. C. E. Meloan, Elementary Infrared Spectroscopy (Macmillan, New York, 1963).
  4. T. S. Kuhn, Black-Body Theory and The Quantum Discontinuity 1894–1912 (Clarendon, Oxford, 1978).
  5. H. Kaplan, “Photonics at work—advanced blackbody reference sources,” Photon. Spectra 24, 92–96 (1990).
  6. W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Government Printing Office, Washington, D.C., 1978).
  7. J. H. van der Maas, Basic Infrared Spectroscopy (Heyden, London, 1969).
  8. H. C. Ohanian, Physics (Norton, New York, 1985).
  9. P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
    [CrossRef]
  10. P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
    [CrossRef]
  11. F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
    [CrossRef]
  12. H. Guckel, D. W. Burns, “Integrated transducers based on blackbody radiation from heated polysilicon films,” presented at Transducers ’85 meeting, Philadelphia, Pa., 11–14 June 1985.
  13. G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).
  14. C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
    [CrossRef]
  15. P. Y. Chen, R. S. Muller, “Microchopper-modulated IR microlamp,” presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., 13–16 June 1994).
  16. T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
    [CrossRef]
  17. S. D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc. 144, 2242–2262 (1997).
    [CrossRef]
  18. E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
    [CrossRef]
  19. S. Wolf, R. N. Tauber, Process Technology, Vol. 1 of Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, Calif., 1986), p. 192.
  20. Sadtler Research Laboratories, Infrared Spectra Handbook of Inorganic Compounds (Sadtler Research Laboratories, Philadelphia, Pa., 1984), p. 86.
  21. R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
    [CrossRef]
  22. D. E. Roller, R. Blum, Physics: Mechanics, Waves, and Thermodynamics (Holden-Day, San Francisco, Calif., 1981), Vol. 1.
  23. M. N. Wybourne, “Thermal conductivity of silicon,” in Properties of Silicon (Institute of Electrical Engineers, London, 1987), pp. 37–39.
  24. P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.
  25. A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
    [CrossRef]

2001

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

2000

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

1997

S. D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc. 144, 2242–2262 (1997).
[CrossRef]

1994

R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
[CrossRef]

1992

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

1991

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

1990

H. Kaplan, “Photonics at work—advanced blackbody reference sources,” Photon. Spectra 24, 92–96 (1990).

1989

E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
[CrossRef]

1973

P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
[CrossRef]

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

Alt, P. M.

P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
[CrossRef]

Bassous, E.

E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
[CrossRef]

Blum, R.

D. E. Roller, R. Blum, Physics: Mechanics, Waves, and Thermodynamics (Holden-Day, San Francisco, Calif., 1981), Vol. 1.

Bouchut, P.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Brown, A. V.

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

Burgess, A.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).

Burns, D. W.

H. Guckel, D. W. Burns, “Integrated transducers based on blackbody radiation from heated polysilicon films,” presented at Transducers ’85 meeting, Philadelphia, Pa., 11–14 June 1985.

Chamonal, J. P.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Chen, P. Y.

P. Y. Chen, R. S. Muller, “Microchopper-modulated IR microlamp,” presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., 13–16 June 1994).

Collins, S. D.

S. D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc. 144, 2242–2262 (1997).
[CrossRef]

Conley, R. T.

R. T. Conley, Infrared Spectroscopy, 2nd ed. (Allyn and Bacon, Boston, Mass., 1972).

Corman, T.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Destefanis, G.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Dmitriev, V. K.

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

Ferber, A. M.

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

Guckel, H.

H. Guckel, D. W. Burns, “Integrated transducers based on blackbody radiation from heated polysilicon films,” presented at Transducers ’85 meeting, Philadelphia, Pa., 11–14 June 1985.

Hochberg, F.

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

Huiku, M.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Jhabvala, M.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).

Kälvesten, E.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Kaplan, H.

H. Kaplan, “Photonics at work—advanced blackbody reference sources,” Photon. Spectra 24, 92–96 (1990).

Kierpilenko, G.

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

Kuhn, T. S.

T. S. Kuhn, Black-Body Theory and The Quantum Discontinuity 1894–1912 (Clarendon, Oxford, 1978).

Lamb, G.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).

Lamberti, A. C.

E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
[CrossRef]

Lloyd, M. H.

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

Mastrangelo, C. H.

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

Meloan, C. E.

C. E. Meloan, Elementary Infrared Spectroscopy (Macmillan, New York, 1963).

Meriläinen, P. T.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Million, A.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Muller, R. S.

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

P. Y. Chen, R. S. Muller, “Microchopper-modulated IR microlamp,” presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., 13–16 June 1994).

Ohanian, H. C.

H. C. Ohanian, Physics (Norton, New York, 1985).

Olckers, P.

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

Pelliciari, B.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Piaguet, J.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Pleshko, P.

P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
[CrossRef]

Rogne, H.

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

Roller, D. E.

D. E. Roller, R. Blum, Physics: Mechanics, Waves, and Thermodynamics (Holden-Day, San Francisco, Calif., 1981), Vol. 1.

Seitz, H. K.

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

Stemme, G.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Szymanski, H. A.

H. A. Szymanski, IR Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964).
[CrossRef]

Tauber, R. N.

S. Wolf, R. N. Tauber, Process Technology, Vol. 1 of Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, Calif., 1986), p. 192.

van der Maas, J. H.

J. H. van der Maas, Basic Infrared Spectroscopy (Heyden, London, 1969).

Weckström, K.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Wise, K. D.

R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
[CrossRef]

Wolf, S.

S. Wolf, R. N. Tauber, Process Technology, Vol. 1 of Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, Calif., 1986), p. 192.

Wolfe, W. L.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Government Printing Office, Washington, D.C., 1978).

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
[CrossRef]

Wybourne, M. N.

M. N. Wybourne, “Thermal conductivity of silicon,” in Properties of Silicon (Institute of Electrical Engineers, London, 1987), pp. 37–39.

Yeh, J. H.-J.

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

Zissis, G. J.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Government Printing Office, Washington, D.C., 1978).

IEEE Trans. Electron Dev.

P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
[CrossRef]

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

J. Electrochem. Soc.

S. D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc. 144, 2242–2262 (1997).
[CrossRef]

J. Microelectromech. Syst.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

J. Vac. Sci. Technol. B

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Meas. Control

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

Microelectron. Eng.

E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
[CrossRef]

Photon. Spectra

H. Kaplan, “Photonics at work—advanced blackbody reference sources,” Photon. Spectra 24, 92–96 (1990).

Sensors Actuators A

R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
[CrossRef]

Other

D. E. Roller, R. Blum, Physics: Mechanics, Waves, and Thermodynamics (Holden-Day, San Francisco, Calif., 1981), Vol. 1.

M. N. Wybourne, “Thermal conductivity of silicon,” in Properties of Silicon (Institute of Electrical Engineers, London, 1987), pp. 37–39.

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

S. Wolf, R. N. Tauber, Process Technology, Vol. 1 of Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, Calif., 1986), p. 192.

Sadtler Research Laboratories, Infrared Spectra Handbook of Inorganic Compounds (Sadtler Research Laboratories, Philadelphia, Pa., 1984), p. 86.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Government Printing Office, Washington, D.C., 1978).

J. H. van der Maas, Basic Infrared Spectroscopy (Heyden, London, 1969).

H. C. Ohanian, Physics (Norton, New York, 1985).

H. A. Szymanski, IR Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964).
[CrossRef]

R. T. Conley, Infrared Spectroscopy, 2nd ed. (Allyn and Bacon, Boston, Mass., 1972).

C. E. Meloan, Elementary Infrared Spectroscopy (Macmillan, New York, 1963).

T. S. Kuhn, Black-Body Theory and The Quantum Discontinuity 1894–1912 (Clarendon, Oxford, 1978).

P. Y. Chen, R. S. Muller, “Microchopper-modulated IR microlamp,” presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., 13–16 June 1994).

H. Guckel, D. W. Burns, “Integrated transducers based on blackbody radiation from heated polysilicon films,” presented at Transducers ’85 meeting, Philadelphia, Pa., 11–14 June 1985.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Diagram of a typical Fourier-transform spectrometer with Michelson interferometer design. The Fourier transform of the detector output identifies the frequency and amplitude of the transmitted optical signal.

Fig. 2
Fig. 2

Cross-sectional drawing of the micromachined silicon filament.

Fig. 3
Fig. 3

Photograph of the first-generation silicon filament chip, with four filaments of lengths 0.5, 1, 1.5, and 2 mm.

Fig. 4
Fig. 4

Flow description of the filament microfabrication process, with corresponding cross-sectional drawings; CVD, chemical-vapor deposition.

Fig. 5
Fig. 5

Spreading resistance analysis: boron concentration versus depth from the silicon surface. Si layer thickness, 2 µm; oxide layer thickness, 1 µm.

Fig. 6
Fig. 6

Scanning-electron microscope image of a free-standing filament after etching in a KOH solution.

Fig. 7
Fig. 7

Current-versus-voltage behavior for four silicon filaments of different lengths. Current saturation begins at the onset of visible incandescence.

Fig. 8
Fig. 8

LPCVD silicon nitride-coated, 1.5-mm silicon filament powered to visible incandescence. The image of the filament at the left was taken with the microscope illuminator turned off.

Fig. 9
Fig. 9

Constant-voltage resistance drift of 0.5-mm filaments: (a) uncoated, (b) coated with PECVD silicon nitride. The values given for current and power are those measured at time zero.

Fig. 10
Fig. 10

Constant-voltage resistance drift of 1.5-mm filaments: (a) uncoated, (b) coated with PECVD silicon nitride.

Fig. 11
Fig. 11

Constant-voltage resistance drift of 1.5-mm LPCVD-coated filaments.

Fig. 12
Fig. 12

Constant-voltage resistance drift of single-crystal silicon and polycrystalline silicon (PolySi) filaments (data points extracted from Mastrangelo et al.14). The uncoated and coated silicon filaments were biased at 5.6 and 5 mA, respectively, at visible incandescence. The polysilicon filament was nitride coated and biased at 1 mA.

Fig. 13
Fig. 13

Calculated ratio of radiant output to input power versus temperature for four filament lengths.

Fig. 14
Fig. 14

Spectral emittance of a 1.5-mm-long silicon nitride-coated single-crystal Si filament biased at 4.4 mA.

Fig. 15
Fig. 15

Photographs of the filament array unbiased (left) and biased to visible incandescence (right). The array contains 40 filaments, each 1 mm × 10 µm × 2 µm.

Fig. 16
Fig. 16

Spectral emittance of filament array at three biases.

Fig. 17
Fig. 17

Radial relative-intensity plot measured for the filament array biased at 130 mA.

Fig. 18
Fig. 18

Optical output versus time of the silicon filament array in response to an applied voltage step. Dashed lines, filament current versus time. The plateau current value is 120 mA.

Tables (1)

Tables Icon

Table 1 Comparison of the Properties of LPCVD and PECVD Silicon Nitride Filmsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Wλ=ε2πc2h/λ5exphc/kTλ-1 W/m3,
W=AεσT4 W,
R=ρLtw=LμNqtw,
ΔH/Δt=kAΔT/L J/s,
Pin-Ploss=ΔH/Δt=kAΔT/L, Ploss=PS+LwεσT4, Pin=VI=kAΔT/L+LwεσT4+PS,
Po/Pi=S+tkΔT/L2εσT4+1-1,
Tx:=Ts+Tmax-Ts1-4x-L/22L2,

Metrics