Abstract

A miniature broadband light source is a critical element in a spectrophotometric microsystem. The design, fabrication, and characterization of a highly stable, miniature broadband light source that comprises filaments of single-crystal silicon are presented. Electrical current versus voltage and radiant emittance spectra under constant voltage bias are measured and related to filament dimensions. A maximum stable operating temperature for these filaments is estimated to be 1200 K. Resistance drift is demonstrated to be less than 0.5% over a 10-h period of continuous operation with visible incandescence. Emittance spectra of a multifilament array, measured at three different electrical biases, are presented and shown to compare well with theoretical blackbody radiation spectra. A continuous, total radiated power of 10.7 mW was achieved with a 1 mm × 1 mm filament array with peak emittance at λ = 2.7 µm.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Szymanski, IR Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964).
  2. R. T. Conley, Infrared Spectroscopy, 2nd ed. (Allyn and Bacon, Boston, Mass., 1972).
  3. C. E. Meloan, Elementary Infrared Spectroscopy (Macmillan, New York, 1963).
  4. T. S. Kuhn, Black-Body Theory and The Quantum Discontinuity 1894–1912 (Clarendon, Oxford, 1978).
  5. H. Kaplan, “Photonics at work—advanced blackbody reference sources,” Photon. Spectra 24, 92–96 (1990).
  6. W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Government Printing Office, Washington, D.C., 1978).
  7. J. H. van der Maas, Basic Infrared Spectroscopy (Heyden, London, 1969).
  8. H. C. Ohanian, Physics (Norton, New York, 1985).
  9. P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
    [CrossRef]
  10. P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
    [CrossRef]
  11. F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
    [CrossRef]
  12. H. Guckel, D. W. Burns, “Integrated transducers based on blackbody radiation from heated polysilicon films,” presented at Transducers ’85 meeting, Philadelphia, Pa., 11–14 June 1985.
  13. G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).
  14. C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
    [CrossRef]
  15. P. Y. Chen, R. S. Muller, “Microchopper-modulated IR microlamp,” presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., 13–16 June 1994).
  16. T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
    [CrossRef]
  17. S. D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc. 144, 2242–2262 (1997).
    [CrossRef]
  18. E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
    [CrossRef]
  19. S. Wolf, R. N. Tauber, Process Technology, Vol. 1 of Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, Calif., 1986), p. 192.
  20. Sadtler Research Laboratories, Infrared Spectra Handbook of Inorganic Compounds (Sadtler Research Laboratories, Philadelphia, Pa., 1984), p. 86.
  21. R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
    [CrossRef]
  22. D. E. Roller, R. Blum, Physics: Mechanics, Waves, and Thermodynamics (Holden-Day, San Francisco, Calif., 1981), Vol. 1.
  23. M. N. Wybourne, “Thermal conductivity of silicon,” in Properties of Silicon (Institute of Electrical Engineers, London, 1987), pp. 37–39.
  24. P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.
  25. A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
    [CrossRef]

2001 (1)

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

2000 (1)

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

1997 (1)

S. D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc. 144, 2242–2262 (1997).
[CrossRef]

1994 (1)

R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
[CrossRef]

1992 (1)

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

1991 (1)

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

1990 (1)

H. Kaplan, “Photonics at work—advanced blackbody reference sources,” Photon. Spectra 24, 92–96 (1990).

1989 (1)

E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
[CrossRef]

1973 (2)

P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
[CrossRef]

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

Alt, P. M.

P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
[CrossRef]

Bassous, E.

E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
[CrossRef]

Blum, R.

D. E. Roller, R. Blum, Physics: Mechanics, Waves, and Thermodynamics (Holden-Day, San Francisco, Calif., 1981), Vol. 1.

Bouchut, P.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Brown, A. V.

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

Burgess, A.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).

Burns, D. W.

H. Guckel, D. W. Burns, “Integrated transducers based on blackbody radiation from heated polysilicon films,” presented at Transducers ’85 meeting, Philadelphia, Pa., 11–14 June 1985.

Chamonal, J. P.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Chen, P. Y.

P. Y. Chen, R. S. Muller, “Microchopper-modulated IR microlamp,” presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., 13–16 June 1994).

Collins, S. D.

S. D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc. 144, 2242–2262 (1997).
[CrossRef]

Conley, R. T.

R. T. Conley, Infrared Spectroscopy, 2nd ed. (Allyn and Bacon, Boston, Mass., 1972).

Corman, T.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Destefanis, G.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Dmitriev, V. K.

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

Ferber, A. M.

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

Guckel, H.

H. Guckel, D. W. Burns, “Integrated transducers based on blackbody radiation from heated polysilicon films,” presented at Transducers ’85 meeting, Philadelphia, Pa., 11–14 June 1985.

Hochberg, F.

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

Huiku, M.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Jhabvala, M.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).

Kälvesten, E.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Kaplan, H.

H. Kaplan, “Photonics at work—advanced blackbody reference sources,” Photon. Spectra 24, 92–96 (1990).

Kierpilenko, G.

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

Kuhn, T. S.

T. S. Kuhn, Black-Body Theory and The Quantum Discontinuity 1894–1912 (Clarendon, Oxford, 1978).

Lamb, G.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).

Lamberti, A. C.

E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
[CrossRef]

Lloyd, M. H.

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

Mastrangelo, C. H.

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

Meloan, C. E.

C. E. Meloan, Elementary Infrared Spectroscopy (Macmillan, New York, 1963).

Meriläinen, P. T.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Million, A.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Muller, R. S.

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

P. Y. Chen, R. S. Muller, “Microchopper-modulated IR microlamp,” presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., 13–16 June 1994).

Ohanian, H. C.

H. C. Ohanian, Physics (Norton, New York, 1985).

Olckers, P.

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

Pelliciari, B.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Piaguet, J.

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Pleshko, P.

P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
[CrossRef]

Rogne, H.

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

Roller, D. E.

D. E. Roller, R. Blum, Physics: Mechanics, Waves, and Thermodynamics (Holden-Day, San Francisco, Calif., 1981), Vol. 1.

Seitz, H. K.

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

Stemme, G.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Szymanski, H. A.

H. A. Szymanski, IR Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964).

Tauber, R. N.

S. Wolf, R. N. Tauber, Process Technology, Vol. 1 of Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, Calif., 1986), p. 192.

van der Maas, J. H.

J. H. van der Maas, Basic Infrared Spectroscopy (Heyden, London, 1969).

Weckström, K.

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

Wise, K. D.

R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
[CrossRef]

Wolf, S.

S. Wolf, R. N. Tauber, Process Technology, Vol. 1 of Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, Calif., 1986), p. 192.

Wolfe, W. L.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Government Printing Office, Washington, D.C., 1978).

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
[CrossRef]

Wybourne, M. N.

M. N. Wybourne, “Thermal conductivity of silicon,” in Properties of Silicon (Institute of Electrical Engineers, London, 1987), pp. 37–39.

Yeh, J. H.-J.

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

Zissis, G. J.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Government Printing Office, Washington, D.C., 1978).

IEEE Trans. Electron Dev. (3)

P. M. Alt, P. Pleshko, “Performance and design considerations of the thin-film tungsten matrix display,” IEEE Trans. Electron Dev. ED-20, 1006–1015 (1973).
[CrossRef]

F. Hochberg, H. K. Seitz, A. V. Brown, “A thin-film integrated incandescent display,” IEEE Trans. Electron Dev. ED-20, 1002–1005 (1973).
[CrossRef]

C. H. Mastrangelo, J. H.-J. Yeh, R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron Dev. 39, 1363–1375 (1992).
[CrossRef]

J. Electrochem. Soc. (1)

S. D. Collins, “Etch stop techniques for micromachining,” J. Electrochem. Soc. 144, 2242–2262 (1997).
[CrossRef]

J. Microelectromech. Syst. (1)

T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509–516 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. Bouchut, G. Destefanis, J. P. Chamonal, A. Million, B. Pelliciari, J. Piaguet, “High-efficiency infrared light emitting diodes made in liquid phase epitaxy and molecular beam epitaxy Hg-Cd-Te Layers,” J. Vac. Sci. Technol. B 9, 1794–1798 (1991).
[CrossRef]

Meas. Control (1)

A. M. Ferber, P. Olckers, H. Rogne, M. H. Lloyd, “A miniature silicon photoacoustic detector for gas monitoring applications,” Meas. Control 34, 44–46 (2001).
[CrossRef]

Microelectron. Eng. (1)

E. Bassous, A. C. Lamberti, “Highly selective KOH-based etchant for boron-doped silicon structures,” Microelectron. Eng. 9, 167–170 (1989).
[CrossRef]

Photon. Spectra (1)

H. Kaplan, “Photonics at work—advanced blackbody reference sources,” Photon. Spectra 24, 92–96 (1990).

Sensors Actuators A (1)

R. F. Wolffenbuttel, K. D. Wise, “Low-temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” Sensors Actuators A 43, 223–229 (1994).
[CrossRef]

Other (15)

D. E. Roller, R. Blum, Physics: Mechanics, Waves, and Thermodynamics (Holden-Day, San Francisco, Calif., 1981), Vol. 1.

M. N. Wybourne, “Thermal conductivity of silicon,” in Properties of Silicon (Institute of Electrical Engineers, London, 1987), pp. 37–39.

P. Olckers, A. M. Ferber, V. K. Dmitriev, G. Kierpilenko, “A photoacoustic gas sensing silicon microsystem,” presented at the Transducers ’01 meeting, Munich, Germany, 10–14 June 2001.

S. Wolf, R. N. Tauber, Process Technology, Vol. 1 of Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, Calif., 1986), p. 192.

Sadtler Research Laboratories, Infrared Spectra Handbook of Inorganic Compounds (Sadtler Research Laboratories, Philadelphia, Pa., 1984), p. 86.

W. L. Wolfe, G. J. Zissis, The Infrared Handbook (U.S. Government Printing Office, Washington, D.C., 1978).

J. H. van der Maas, Basic Infrared Spectroscopy (Heyden, London, 1969).

H. C. Ohanian, Physics (Norton, New York, 1985).

H. A. Szymanski, IR Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964).

R. T. Conley, Infrared Spectroscopy, 2nd ed. (Allyn and Bacon, Boston, Mass., 1972).

C. E. Meloan, Elementary Infrared Spectroscopy (Macmillan, New York, 1963).

T. S. Kuhn, Black-Body Theory and The Quantum Discontinuity 1894–1912 (Clarendon, Oxford, 1978).

P. Y. Chen, R. S. Muller, “Microchopper-modulated IR microlamp,” presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., 13–16 June 1994).

H. Guckel, D. W. Burns, “Integrated transducers based on blackbody radiation from heated polysilicon films,” presented at Transducers ’85 meeting, Philadelphia, Pa., 11–14 June 1985.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-circuit broadband infrared source,” Tech. Brief (NASA, Washington, D.C., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics