Abstract

Recent results are reported about the optical quality surface finish obtained on glass substrates with focused laser beam produced metal plasma etching in the atmosphere. The bombardment of high-speed, high-temperature electrons from an underdense plasma on the surface of glass substrates appears to play a dominant role in this process. The effective laser fluence window for this high-quality glass machining on common microscope slides is relatively narrow. With a Corning microslide 2947, and by use of carbon steel as the plasma source, we obtained parameters between 3.5 and 4.5 J/cm2. Above the upper limit, laser-induced optical breakdown occurs in the glass material and leads to the formation of microcracks. Below the lower limit, the process was found to be ineffective. In these experiments highly defined, clean, sharp-edged, 50 × 50 micropit arrays of 15.0-µm diameter with a depth of 3.2 µm and a center-to-center separation of 18.0 µm were fabricated on Corning microslide 2947 glass substrates.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Braren, R. Srinivasan, “Controlled etching of silicate glasses by pulsed ultraviolet laser radiation,” J. Vac. Sci. Technol. B 6, 537–541 (1988).
    [CrossRef]
  2. P. E. Dyer, W. J. Metheringham, S. R. Jackson, “Excimer laser ablation of Nd:YAG and Nd:glass,” Appl. Surf. Sci. 86, 223–227 (1995).
    [CrossRef]
  3. S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, J. S. Wilkinson, “Ablated gratings on borosilicate glass by 193-nm excimer laser radiation,” Appl. Phys. A 69, S739–S741 (1999).
    [CrossRef]
  4. P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
    [CrossRef]
  5. W. Kautek, J. Kruger, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
  6. S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875–880 (1998).
  7. M. Lenzner, J. Krüger, W. Kautek, F. Krausz, “Precision laser ablation of dielectrics in the 10-fs regime,” Appl. Phys. A 68, 369–371 (1999).
    [CrossRef]
  8. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).
    [CrossRef]
  9. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misswa, J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001).
    [CrossRef]
  10. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912–1914 (2001).
    [CrossRef]
  11. J. Wang, H. Niino, A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
    [CrossRef]
  12. J. Zhang, K. Sugioka, K. Midorikawa, “High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser,” Appl. Phys. A 67, 499–501 (1998).
    [CrossRef]
  13. J. Zhang, K. Sugioka, K. Midorikawa, “Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+:YAG laser,” Appl. Phys. A 67, 545–549 (1998).
    [CrossRef]
  14. J. Zhang, K. Sugioka, K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998)
    [CrossRef]
  15. A. Rubenchik, S. Witkowski, Physics of Laser Plasma (North-Holland, Amsterdam, 1991).
    [CrossRef]
  16. H. J. Schwarz, H. Hora, M. J. Lubin, B. Yaakobi, Laser Interaction and Related Plasma Phenomena (Plenum, New York, 1981).
  17. H. Hora, Plasmas at High Temperature and Density (Springer-Verlag, Berlin, 1991).

2001 (2)

2000 (1)

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

1999 (3)

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, J. S. Wilkinson, “Ablated gratings on borosilicate glass by 193-nm excimer laser radiation,” Appl. Phys. A 69, S739–S741 (1999).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, F. Krausz, “Precision laser ablation of dielectrics in the 10-fs regime,” Appl. Phys. A 68, 369–371 (1999).
[CrossRef]

J. Wang, H. Niino, A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

1998 (4)

J. Zhang, K. Sugioka, K. Midorikawa, “High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser,” Appl. Phys. A 67, 499–501 (1998).
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+:YAG laser,” Appl. Phys. A 67, 545–549 (1998).
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998)
[CrossRef]

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875–880 (1998).

1997 (1)

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).
[CrossRef]

1996 (1)

W. Kautek, J. Kruger, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).

1995 (1)

P. E. Dyer, W. J. Metheringham, S. R. Jackson, “Excimer laser ablation of Nd:YAG and Nd:glass,” Appl. Surf. Sci. 86, 223–227 (1995).
[CrossRef]

1988 (1)

B. Braren, R. Srinivasan, “Controlled etching of silicate glasses by pulsed ultraviolet laser radiation,” J. Vac. Sci. Technol. B 6, 537–541 (1988).
[CrossRef]

Ameer-Beg, S.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875–880 (1998).

Ashkenasi, D.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).
[CrossRef]

Braren, B.

B. Braren, R. Srinivasan, “Controlled etching of silicate glasses by pulsed ultraviolet laser radiation,” J. Vac. Sci. Technol. B 6, 537–541 (1988).
[CrossRef]

Campbell, E. E. B.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).
[CrossRef]

Champoux, H.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875–880 (1998).

Chen, K.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Dyer, P. E.

P. E. Dyer, W. J. Metheringham, S. R. Jackson, “Excimer laser ablation of Nd:YAG and Nd:glass,” Appl. Surf. Sci. 86, 223–227 (1995).
[CrossRef]

Hempstead, M.

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, J. S. Wilkinson, “Ablated gratings on borosilicate glass by 193-nm excimer laser radiation,” Appl. Phys. A 69, S739–S741 (1999).
[CrossRef]

Herman, P. R.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Hora, H.

H. J. Schwarz, H. Hora, M. J. Lubin, B. Yaakobi, Laser Interaction and Related Plasma Phenomena (Plenum, New York, 1981).

H. Hora, Plasmas at High Temperature and Density (Springer-Verlag, Berlin, 1991).

Itoh, K.

Jackson, S. R.

P. E. Dyer, W. J. Metheringham, S. R. Jackson, “Excimer laser ablation of Nd:YAG and Nd:glass,” Appl. Surf. Sci. 86, 223–227 (1995).
[CrossRef]

Jiang, Y.

Juodkazis, S.

Kautek, W.

M. Lenzner, J. Krüger, W. Kautek, F. Krausz, “Precision laser ablation of dielectrics in the 10-fs regime,” Appl. Phys. A 68, 369–371 (1999).
[CrossRef]

W. Kautek, J. Kruger, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).

Konovalov, I.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Krausz, F.

M. Lenzner, J. Krüger, W. Kautek, F. Krausz, “Precision laser ablation of dielectrics in the 10-fs regime,” Appl. Phys. A 68, 369–371 (1999).
[CrossRef]

Kruger, J.

W. Kautek, J. Kruger, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).

Krüger, J.

M. Lenzner, J. Krüger, W. Kautek, F. Krausz, “Precision laser ablation of dielectrics in the 10-fs regime,” Appl. Phys. A 68, 369–371 (1999).
[CrossRef]

Kuroda, D.

Lenzner, M.

M. Lenzner, J. Krüger, W. Kautek, F. Krausz, “Precision laser ablation of dielectrics in the 10-fs regime,” Appl. Phys. A 68, 369–371 (1999).
[CrossRef]

Li, Y.

Lubin, M. J.

H. J. Schwarz, H. Hora, M. J. Lubin, B. Yaakobi, Laser Interaction and Related Plasma Phenomena (Plenum, New York, 1981).

Marcinkevicius, A.

Marjoribanks, R. S.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Matsuo, S.

Metheringham, W. J.

P. E. Dyer, W. J. Metheringham, S. R. Jackson, “Excimer laser ablation of Nd:YAG and Nd:glass,” Appl. Surf. Sci. 86, 223–227 (1995).
[CrossRef]

Midorikawa, K.

J. Zhang, K. Sugioka, K. Midorikawa, “High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser,” Appl. Phys. A 67, 499–501 (1998).
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+:YAG laser,” Appl. Phys. A 67, 545–549 (1998).
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998)
[CrossRef]

Misswa, H.

Miwa, M.

Ness, S.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Niino, H.

J. Wang, H. Niino, A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

Nishii, J.

Oettl, A.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

Perrie, W.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875–880 (1998).

Pissadakis, S.

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, J. S. Wilkinson, “Ablated gratings on borosilicate glass by 193-nm excimer laser radiation,” Appl. Phys. A 69, S739–S741 (1999).
[CrossRef]

Rathbone, S.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875–880 (1998).

Reekie, L.

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, J. S. Wilkinson, “Ablated gratings on borosilicate glass by 193-nm excimer laser radiation,” Appl. Phys. A 69, S739–S741 (1999).
[CrossRef]

Rosenfeld, A.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).
[CrossRef]

Rubenchik, A.

A. Rubenchik, S. Witkowski, Physics of Laser Plasma (North-Holland, Amsterdam, 1991).
[CrossRef]

Schwarz, H. J.

H. J. Schwarz, H. Hora, M. J. Lubin, B. Yaakobi, Laser Interaction and Related Plasma Phenomena (Plenum, New York, 1981).

Srinivasan, R.

B. Braren, R. Srinivasan, “Controlled etching of silicate glasses by pulsed ultraviolet laser radiation,” J. Vac. Sci. Technol. B 6, 537–541 (1988).
[CrossRef]

Sugioka, K.

J. Zhang, K. Sugioka, K. Midorikawa, “Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+:YAG laser,” Appl. Phys. A 67, 545–549 (1998).
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998)
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser,” Appl. Phys. A 67, 499–501 (1998).
[CrossRef]

Varel, H.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).
[CrossRef]

Wähmer, M.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).
[CrossRef]

Wang, J.

J. Wang, H. Niino, A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

Watanabe, M.

Watanabe, W.

Weaver, W.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875–880 (1998).

Wilkinson, J. S.

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, J. S. Wilkinson, “Ablated gratings on borosilicate glass by 193-nm excimer laser radiation,” Appl. Phys. A 69, S739–S741 (1999).
[CrossRef]

Witkowski, S.

A. Rubenchik, S. Witkowski, Physics of Laser Plasma (North-Holland, Amsterdam, 1991).
[CrossRef]

Wright, J.

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875–880 (1998).

Yaakobi, B.

H. J. Schwarz, H. Hora, M. J. Lubin, B. Yaakobi, Laser Interaction and Related Plasma Phenomena (Plenum, New York, 1981).

Yabe, A.

J. Wang, H. Niino, A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

Yamada, K.

Zervas, M. N.

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, J. S. Wilkinson, “Ablated gratings on borosilicate glass by 193-nm excimer laser radiation,” Appl. Phys. A 69, S739–S741 (1999).
[CrossRef]

Zhang, J.

J. Zhang, K. Sugioka, K. Midorikawa, “High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser,” Appl. Phys. A 67, 499–501 (1998).
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998)
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+:YAG laser,” Appl. Phys. A 67, 545–549 (1998).
[CrossRef]

Appl. Phys. A (6)

S. Pissadakis, L. Reekie, M. Hempstead, M. N. Zervas, J. S. Wilkinson, “Ablated gratings on borosilicate glass by 193-nm excimer laser radiation,” Appl. Phys. A 69, S739–S741 (1999).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, F. Krausz, “Precision laser ablation of dielectrics in the 10-fs regime,” Appl. Phys. A 68, 369–371 (1999).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65, 367–373 (1997).
[CrossRef]

J. Wang, H. Niino, A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser,” Appl. Phys. A 67, 499–501 (1998).
[CrossRef]

J. Zhang, K. Sugioka, K. Midorikawa, “Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+:YAG laser,” Appl. Phys. A 67, 545–549 (1998).
[CrossRef]

Appl. Surf. Sci. (4)

P. E. Dyer, W. J. Metheringham, S. R. Jackson, “Excimer laser ablation of Nd:YAG and Nd:glass,” Appl. Surf. Sci. 86, 223–227 (1995).
[CrossRef]

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155, 577–586 (2000).
[CrossRef]

W. Kautek, J. Kruger, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).

S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux, “Femtosecond laser microstructuring of materials,” Appl. Surf. Sci. 127–129, 875–880 (1998).

J. Vac. Sci. Technol. B (1)

B. Braren, R. Srinivasan, “Controlled etching of silicate glasses by pulsed ultraviolet laser radiation,” J. Vac. Sci. Technol. B 6, 537–541 (1988).
[CrossRef]

Opt. Lett. (3)

Other (3)

A. Rubenchik, S. Witkowski, Physics of Laser Plasma (North-Holland, Amsterdam, 1991).
[CrossRef]

H. J. Schwarz, H. Hora, M. J. Lubin, B. Yaakobi, Laser Interaction and Related Plasma Phenomena (Plenum, New York, 1981).

H. Hora, Plasmas at High Temperature and Density (Springer-Verlag, Berlin, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Top-hat profile of the laser beam at the focal plane with a focal diameter of ∼17 µm.

Fig. 2
Fig. 2

Direct ablation on the rear surface of Corning microslide 2947 by 532- and 3-ns laser pulses at a threshold fluence of 22.6 J/cm2 and 200 laser shots.

Fig. 3
Fig. 3

(a) Pit with a diameter of 15 µm and a central depth of 3.2 µm on a Corning Microslide etched by use of a carbon steel plasma at a laser fluence of 3.8 J/cm2 and 4000 shots. (b) Section of a 50 × 50 micropit array machined on to a microslide. The designed center-to-center separation of the 15-µm-diameter pits is 18 µm.

Fig. 4
Fig. 4

Cross-sectional profile taken with a Wyko interferometric surface profiler for a 15-µm-diameter pit etched by use of 60 shots at a fluence of 3.8 J/cm2.

Fig. 5
Fig. 5

Pit with microcracks caused by laser-induced optical breakdown at a laser fluence greater than 5 J/cm2.

Fig. 6
Fig. 6

Pit with a diameter of 11 µm and a depth of 3.4 µm etched by a tungsten plasma at a fluence of 6.5 J/cm2 and 4000 laser shots.

Fig. 7
Fig. 7

(a) Dependence of etch depth on the number of laser shots. The depth of the pit on the glass plate is saturated at approximately 3 µm with 4000 laser shots. (b) Relationship between the average etch rate and the number of laser shots. The average etch rate decreased from 3.35 nm/shot at 200 shots to 0.35 nm/shot at 10,000 shots.

Metrics