Abstract

We demonstrate a new method for measuring changes in temperature distribution caused by coupling a high-power laser beam into an optical fiber and by splicing two fibers. The measurement technique is based on interrogating a fiber Bragg grating by using low-coherence spectral interferometry. A large temperature change is found owing to coupling of a high-power laser into a multimode fiber and to splicing of two multimode fibers. Measurement of the temperature profile rather than the average temperature along the grating allows study of the cause of fiber heating. The new measurement technique enables us to monitor in real time the temperature profile in a fiber without the affecting system operation, and it might be important for developing and improving the reliability of high-power fiber components.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
    [CrossRef]
  2. D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber laser,” IEEE J. Quantum Electron. 37, 207–217 (2001).
    [CrossRef]
  3. A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  4. S. Huang, M. M. Ohn, M. Leblanc, R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Struct. 7, 248–256 (1998).
    [CrossRef]
  5. S. Keren, M. Horowitz, “Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses,” Opt. Lett. 26, 328–330 (2001).
    [CrossRef]
  6. M. Horowitz, Y. Barad, Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22, 799–801 (1997).
    [CrossRef] [PubMed]
  7. M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Askin, E. J. Friebele, “Broadband square-pulses operation of passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23, 138–140 (1998).
    [CrossRef]
  8. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  9. G. H. Song, S. Y. Shin, “Design of corrugated waveguide filters by the Gelfand–Levitan–Marchenko inverse-scattering method,” J. Opt. Soc. Am. A 2, 1905–1915 (1985).
    [CrossRef]
  10. H. Kogelnik, “Filter response of nonuniform almost-periodic structure,” Bell Syst. Tech. J. 55, 109–126 (1976).
    [CrossRef]
  11. D. Gabor, “Theory of communication,” J. Inst. Elecr. Eng. 93 (III), 429–457 (1946).
  12. M. Commandrè, P. Roche, J. P. Borgogno, G. Albrand, “Absorption mapping for characterization of glass surfaces,” Appl. Opt. 34, 2372–2379 (1995).
    [CrossRef] [PubMed]
  13. T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]

2001 (2)

D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber laser,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[CrossRef]

S. Keren, M. Horowitz, “Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses,” Opt. Lett. 26, 328–330 (2001).
[CrossRef]

1999 (1)

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

1998 (2)

S. Huang, M. M. Ohn, M. Leblanc, R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Askin, E. J. Friebele, “Broadband square-pulses operation of passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23, 138–140 (1998).
[CrossRef]

1997 (3)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

M. Horowitz, Y. Barad, Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22, 799–801 (1997).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

1985 (1)

1976 (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structure,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

1946 (1)

D. Gabor, “Theory of communication,” J. Inst. Elecr. Eng. 93 (III), 429–457 (1946).

Albrand, G.

Askin, C. G.

Askins, C. G.

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Barad, Y.

Bicknese, S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Borgogno, J. P.

Brown, D. C.

D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber laser,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[CrossRef]

Commandrè, M.

Davis, M. A.

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Dennis, M. L.

Dohle, R.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Dominic, V.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Duling, I. N.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Friebele, E. J.

M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Askin, E. J. Friebele, “Broadband square-pulses operation of passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23, 138–140 (1998).
[CrossRef]

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Gabor, D.

D. Gabor, “Theory of communication,” J. Inst. Elecr. Eng. 93 (III), 429–457 (1946).

Hoffman, H. J.

D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber laser,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[CrossRef]

Horowitz, M.

Huang, S.

S. Huang, M. M. Ohn, M. Leblanc, R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

Keren, S.

Kersley, A. D.

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Filter response of nonuniform almost-periodic structure,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Koo, K. P.

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Leblanc, M.

S. Huang, M. M. Ohn, M. Leblanc, R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

MacCormack, S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Measures, R. M.

S. Huang, M. M. Ohn, M. Leblanc, R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Ohn, M. M.

S. Huang, M. M. Ohn, M. Leblanc, R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

Patrick, H. J.

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Askin, E. J. Friebele, “Broadband square-pulses operation of passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23, 138–140 (1998).
[CrossRef]

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Roche, P.

Sanders, S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Shin, S. Y.

Silberberg, Y.

Song, G. H.

Waarts, R.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Wolak, E.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Yeh, P. S.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Zucker, E.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structure,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Electron. Lett. (1)

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, E. Zucker, “110 W fiber laser,” Electron. Lett. 35, 1158–1160 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber laser,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

J. Inst. Elecr. Eng. (1)

D. Gabor, “Theory of communication,” J. Inst. Elecr. Eng. 93 (III), 429–457 (1946).

J. Lightwave Technol. (2)

A. D. Kersley, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (3)

Smart Mater. Struct. (1)

S. Huang, M. M. Ohn, M. Leblanc, R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic description of the experimental setup used to measure the temperature profile caused (a) by coupling a high-power argon-ion laser beam into a fiber and (b) by splicing two optical fibers.

Fig. 2
Fig. 2

Two typical temperature profiles measured in a steady-state condition when an argon-ion laser with a power of 3 W was coupled into a fiber. The results are analyzed by using the Gabor transform.

Fig. 3
Fig. 3

Two typical temperature profiles measured in a steady-state condition when an argon-ion laser with a power of 3 W was coupled into a fiber. The results are analyzed by using the Fourier transform.

Fig. 4
Fig. 4

Temperature distribution around the splice region of a multimode fiber analyzed by using (a) the Gabor transform and (b) the Fourier transform. The power of the argon-ion laser was 3 W, and the coupling efficiency was ∼40%.

Fig. 5
Fig. 5

Amplitude of the impulse response of a grating, written at a splice region of a fiber, measured after the power of the argon-ion laser was increased to 6 W for ∼5 min. The hole in the amplitude of the impulse response indicates that the grating was erased around the splice region.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

nz=n0z+n1zcos2πΛz+θz,
δλBz=2Λδn0z-Λ2navgπdδθzdz,
1λBδλBδT=6.67×10-6 °C-1.
hz=κzexpiϕz,
ϕz=4π/λ 0z n0zdz-θz
δλBz=-dδϕzdzλBΛ.
Gt, Ω=-IωWω-Ωexp-iωtdω,
λB¯t=-λ|Gt, λ|d-|Gt, λ|d.
δt=4 ln2λ2πcΔλ.

Metrics