Abstract

We report the fabrication and modeling of single-mode tapered optical fiber sensors. The fabrication technique consists of stretching a section of fiber with an oscillating flame torch. Such a process allows controllable fabrication of lossless tapered fibers with a uniform waist. The sensor transmittance is modeled with a simple ray optics approach. In the model, all the taper parameters are taken into account. Our results indicate that sensor sensitivity can be adjusted with the taper waist diameter. As an example a gold-coated tapered fiber is theoretically and experimentally analyzed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Wolfbeis, ed., Fiber Optic Chemical Sensors and Biosensors, (CRC Press, Boca Raton, Fla., 1991), Vols. I and II.
  2. A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood Mass., 1999).
  3. L. C. Bobb, H. D. Krumboltz, P. M. Shankar, “Pressure sensor that uses bent biconically tapered single-mode fibers,” Opt. Lett. 16, 112–114 (1991).
    [CrossRef] [PubMed]
  4. A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Singlemode optical fibre surface plasma wave chemical sensor,” Electron Lett. 31, 1770–1771 (1995).
    [CrossRef]
  5. A. Romolini, R. Falciai, A. Schena, “Biconically-tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
    [CrossRef]
  6. M. Shadaram, L. Espada, J. Martinez, F. Garcia, “Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors,” Opt. Eng. 37, 1124–1129 (1998).
    [CrossRef]
  7. P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
    [CrossRef]
  8. C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
    [CrossRef]
  9. G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
    [CrossRef]
  10. W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26, S261–S272 (1994).
    [CrossRef]
  11. A. Diez, M. V. Andres, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
    [CrossRef]
  12. J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
    [CrossRef]
  13. R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
    [CrossRef]
  14. T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  15. J. D. Love, W. M. Henry, “Quantifying loss minimization in singlemode fiber tapers,” Electron Lett. 22, 912–914 (1986).
    [CrossRef]
  16. F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, J. Bures, “Investigation of power oscillations along tapered monomode fibres,” Appl. Opt. 26, 444–448 (1987).
    [CrossRef] [PubMed]
  17. L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” IEEE J. Lightwave Technol. 8, 1084–1090 (1990).
    [CrossRef]
  18. A. Diez, M. V. Andres, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
    [CrossRef]
  19. J. H. Zhan, S. M. Tseng, “Analysis of the light transmission of cylindrical doubly-clad waveguides with anisotropic and metallic outer claddings,” Jpn. J. Appl. Phys. 36, L1390–L1393 (1997).
    [CrossRef]
  20. J. Adams, Introduction to Optical Waveguides (Wiley, New York, 1981).
  21. K. Okamoto, Fundamentals of Optical Waveguides, 1st ed. (Academic, San Diego, Calif., 2000).
  22. J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. (to be published).

2001 (1)

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

2000 (1)

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

1999 (2)

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
[CrossRef]

A. Diez, M. V. Andres, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

1998 (2)

A. Romolini, R. Falciai, A. Schena, “Biconically-tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

M. Shadaram, L. Espada, J. Martinez, F. Garcia, “Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors,” Opt. Eng. 37, 1124–1129 (1998).
[CrossRef]

1997 (1)

J. H. Zhan, S. M. Tseng, “Analysis of the light transmission of cylindrical doubly-clad waveguides with anisotropic and metallic outer claddings,” Jpn. J. Appl. Phys. 36, L1390–L1393 (1997).
[CrossRef]

1996 (1)

A. Diez, M. V. Andres, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

1995 (1)

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Singlemode optical fibre surface plasma wave chemical sensor,” Electron Lett. 31, 1770–1771 (1995).
[CrossRef]

1994 (2)

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26, S261–S272 (1994).
[CrossRef]

1992 (1)

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

1991 (2)

L. C. Bobb, H. D. Krumboltz, P. M. Shankar, “Pressure sensor that uses bent biconically tapered single-mode fibers,” Opt. Lett. 16, 112–114 (1991).
[CrossRef] [PubMed]

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

1990 (1)

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” IEEE J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

1987 (1)

1986 (1)

J. D. Love, W. M. Henry, “Quantifying loss minimization in singlemode fiber tapers,” Electron Lett. 22, 912–914 (1986).
[CrossRef]

Adams, J.

J. Adams, Introduction to Optical Waveguides (Wiley, New York, 1981).

Andres, M. V.

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

A. Diez, M. V. Andres, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

A. Diez, M. V. Andres, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. (to be published).

Arregui, F. J.

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Bariáin, C.

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Birks, T. A.

A. Diez, M. V. Andres, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

Bobb, L. C.

L. C. Bobb, H. D. Krumboltz, P. M. Shankar, “Pressure sensor that uses bent biconically tapered single-mode fibers,” Opt. Lett. 16, 112–114 (1991).
[CrossRef] [PubMed]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” IEEE J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Bures, J.

Cahill, L. W.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
[CrossRef]

Cruz, J. L.

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

A. Diez, M. V. Andres, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. (to be published).

Culshaw, B.

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

Culverhouse, D. O.

A. Diez, M. V. Andres, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

Diez, A.

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

A. Diez, M. V. Andres, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

A. Diez, M. V. Andres, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. (to be published).

Espada, L.

M. Shadaram, L. Espada, J. Martinez, F. Garcia, “Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors,” Opt. Eng. 37, 1124–1129 (1998).
[CrossRef]

Falciai, R.

A. Romolini, R. Falciai, A. Schena, “Biconically-tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

Garcia, F.

M. Shadaram, L. Espada, J. Martinez, F. Garcia, “Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors,” Opt. Eng. 37, 1124–1129 (1998).
[CrossRef]

Gonthier, F.

Henry, W.

W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26, S261–S272 (1994).
[CrossRef]

Henry, W. M.

J. D. Love, W. M. Henry, “Quantifying loss minimization in singlemode fiber tapers,” Electron Lett. 22, 912–914 (1986).
[CrossRef]

Huntington, S. T.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
[CrossRef]

Kalli, K.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood Mass., 1999).

Katsifolis, J.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
[CrossRef]

Kenny, R. P.

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

Krumboltz, H. D.

L. C. Bobb, H. D. Krumboltz, P. M. Shankar, “Pressure sensor that uses bent biconically tapered single-mode fibers,” Opt. Lett. 16, 112–114 (1991).
[CrossRef] [PubMed]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” IEEE J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Lacroix, S.

Lapierre, J.

Li, Y. W.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

López-Amo, M.

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, “Quantifying loss minimization in singlemode fiber tapers,” Electron Lett. 22, 912–914 (1986).
[CrossRef]

Lowe, C. R.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Singlemode optical fibre surface plasma wave chemical sensor,” Electron Lett. 31, 1770–1771 (1995).
[CrossRef]

Martinez, J.

M. Shadaram, L. Espada, J. Martinez, F. Garcia, “Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors,” Opt. Eng. 37, 1124–1129 (1998).
[CrossRef]

Matías, I. R.

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Millington, R. B.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Singlemode optical fibre surface plasma wave chemical sensor,” Electron Lett. 31, 1770–1771 (1995).
[CrossRef]

Moar, P. N.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
[CrossRef]

Nugent, K. A.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
[CrossRef]

Oakley, K. P.

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides, 1st ed. (Academic, San Diego, Calif., 2000).

Othonos, A.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood Mass., 1999).

Payne, F. P.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Singlemode optical fibre surface plasma wave chemical sensor,” Electron Lett. 31, 1770–1771 (1995).
[CrossRef]

Roberts, A.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
[CrossRef]

Romolini, A.

A. Romolini, R. Falciai, A. Schena, “Biconically-tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

Schena, A.

A. Romolini, R. Falciai, A. Schena, “Biconically-tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

Shadaram, M.

M. Shadaram, L. Espada, J. Martinez, F. Garcia, “Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors,” Opt. Eng. 37, 1124–1129 (1998).
[CrossRef]

Shankar, P. M.

L. C. Bobb, H. D. Krumboltz, P. M. Shankar, “Pressure sensor that uses bent biconically tapered single-mode fibers,” Opt. Lett. 16, 112–114 (1991).
[CrossRef] [PubMed]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” IEEE J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Stewart, G.

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

Tseng, S. M.

J. H. Zhan, S. M. Tseng, “Analysis of the light transmission of cylindrical doubly-clad waveguides with anisotropic and metallic outer claddings,” Jpn. J. Appl. Phys. 36, L1390–L1393 (1997).
[CrossRef]

Tubb, A. J. C.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Singlemode optical fibre surface plasma wave chemical sensor,” Electron Lett. 31, 1770–1771 (1995).
[CrossRef]

Veilleux, C.

Villatoro, J.

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. (to be published).

Zhan, J. H.

J. H. Zhan, S. M. Tseng, “Analysis of the light transmission of cylindrical doubly-clad waveguides with anisotropic and metallic outer claddings,” Jpn. J. Appl. Phys. 36, L1390–L1393 (1997).
[CrossRef]

Appl. Opt. (1)

Electron Lett. (2)

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Singlemode optical fibre surface plasma wave chemical sensor,” Electron Lett. 31, 1770–1771 (1995).
[CrossRef]

J. D. Love, W. M. Henry, “Quantifying loss minimization in singlemode fiber tapers,” Electron Lett. 22, 912–914 (1986).
[CrossRef]

Electron. Lett. (3)

A. Diez, M. V. Andres, D. O. Culverhouse, T. A. Birks, “Cylindrical metal-coated optical fibres for filters and sensors,” Electron. Lett. 32, 1390–1392 (1996).
[CrossRef]

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre,” Electron. Lett. 37, 1011–1012 (2001).
[CrossRef]

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

IEEE J. Lightwave Technol. (2)

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” IEEE J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

J. Appl. Phys. (1)

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85, 3395–3398 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

J. H. Zhan, S. M. Tseng, “Analysis of the light transmission of cylindrical doubly-clad waveguides with anisotropic and metallic outer claddings,” Jpn. J. Appl. Phys. 36, L1390–L1393 (1997).
[CrossRef]

Opt. Eng. (1)

M. Shadaram, L. Espada, J. Martinez, F. Garcia, “Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors,” Opt. Eng. 37, 1124–1129 (1998).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (2)

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26, S261–S272 (1994).
[CrossRef]

Sens. Actuators A (1)

A. Romolini, R. Falciai, A. Schena, “Biconically-tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

Sens. Actuators B (1)

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Other (5)

O. S. Wolfbeis, ed., Fiber Optic Chemical Sensors and Biosensors, (CRC Press, Boca Raton, Fla., 1991), Vols. I and II.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood Mass., 1999).

J. Adams, Introduction to Optical Waveguides (Wiley, New York, 1981).

K. Okamoto, Fundamentals of Optical Waveguides, 1st ed. (Academic, San Diego, Calif., 2000).

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Diagram of a tapered optical fiber with a uniform waist. Propagation of the fundamental mode is illustrated. (b) Parameters used to model the sensor properties: t, film thickness; θ0, incident angle of the plane wave; F, Fresnel coefficient. (c) The tapered central region is treated like a dielectric rod of refractive index n 2 and diameter ρ immersed in a medium of refractive index n 4. The shaded areas represent the transducer.

Fig. 2
Fig. 2

Schematic diagram of the tapering station used to fabricate the samples. The arrows indicate the direction of movement. L 0 is the length of oscillation of the flame torch. SMF, single-mode fiber.

Fig. 3
Fig. 3

Tapered waist diameter versus elongation distance. The continuous curve represents the theoretical diameter [Eq. (1)] and the filled circles represent experimental points. In this case L 0 was 10 mm.

Fig. 4
Fig. 4

Theoretical transmission spectra of a uniform-waist SMTF coated with a 27-nm-thick gold layer for different waist diameters. The plot was calculated by use of Eq. (4). L 0 was assumed to be 4 mm and n 4 = 1.434. The solid curve was obtained for ρ = 40 µm, the dash-dot curve for ρ = 35 µm, the dashed curve for ρ = 30 µm.

Fig. 5
Fig. 5

Experimental transmission spectra of two samples with the same L 0 (4 mm) and gold layer thickness (27 nm) but different waist diameters. The solid SPR curve was obtained for ρ = 35 µm, the dash-dot curve for ρ = 25 µm. The external medium was Cargille oil with a nominal refractive index of 1.444.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ=ρ0 exp-z/2L0,
Nr=L0ρ tanθ0+z0,
T=exp-αL0=|Fn, θ0|2Nr,
T=12|Fsn, θ0|2+12|Fpn, θ0|2Nr.

Metrics