Abstract

Enhancement of the extreme ultraviolet quantum detection efficiency (QDE) of microchannel plate (MCP) detectors by use of a wet chemical method is examined. It is shown that the chemical process of ion exchange, in addition to physical processes that increase surface roughness and decrease surface density, augments the secondary electron emission coefficient, which in turn increases the quantum detection efficiency of the input MCP. The method has been demonstrated with nitric acid, acetic acid, or water used as the active reactant. By monitoring and optimizing the ion-exchange process, we achieved a 2.6–4.4 increase in the MCP QDE from 1216 to 304 Å, respectively, with an absolute QDE of approximately 50% at 304 Å.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hemphill, J. Edelstein, D. Rogers, “Chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” Appl. Opt. 36, 1421–1426 (1997).
    [CrossRef] [PubMed]
  2. R. Hemphill, J. Edelstein, “Analysis of a chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” in Future EUV/UV Space Astrophysics Missions and Instrumentation, J. C. Blades, O. H. W. Siegmund, eds.Proc. SPIE4854, 577–582 (2003).
    [CrossRef]
  3. G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods 224, 272–286 (1984).
    [CrossRef]
  4. J. J. Fijol, A. M. Then, G. W. Tasker, “Secondary electron yield of SiO2 and Si3N4 films for continuous dynode electron multipliers,” Appl. Surf. Sci. 48/49, 464–471 (1991).
    [CrossRef]
  5. A. M. Then, C. G. Pantano, “Formation and behavior of surface layers on electron emission glasses,” J. Non-Cryst. Solids 120, 178–187 (1990).
    [CrossRef]
  6. K. K. Sidorin, A. L. Shakhmin, A. M. Tyutikov, V. N. Makhov, “Electron structure of lead-silicate glasses,” Opt. Spectrosc. 72, 89–93 (1992).
  7. A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).
  8. A. M. Tyutikov, A. L. Shakhmin, “Secondary electron emission from lead silicate glasses considered from the point of view of the plasmon theory of emission,” Sov. Phys. Solid State 34, 1549–1552 (1992).
  9. A. G. Revesz, “Noncrystalline silicon dioxide films on silicon: a review,” J. Non-Cryst. Solids 11, 309–330 (1973).
    [CrossRef]
  10. M. Schwartz, R. J. Berry, “Ab initio investigation of substituent effects on bond dissociation ethalpies in siloxanes and silanols,” J. Mol. Struct. 538, 9–17 (2001).
    [CrossRef]
  11. D. J. Lucas, L. A. Curtiss, “Theoretical study of the silicon-oxygen hydrides SiOHn (n = 0–4) and SiOH n+ (n = 0–5): dissociation energies, ionization energies, enthalpies of formation and proton affinities,” J. Chem. Phys. 99, 6697–6703 (1993).
    [CrossRef]
  12. G. A. Ausman, F. B. McLean, “Electron-hole pair creation energy in SiO2,” Appl. Phys. Lett. 26, 173–175 (1975).
    [CrossRef]
  13. Y. Hayashi, K. Matsumoto, “Determination of surface silanol group on silicate glasses using static SIMS,” J. Ceram. Soc. Jpn. 100, 1038–1041 (1992).
    [CrossRef]
  14. A. M. Tyutikov, M. N. Toiseva, V. N. Polukhin, N. V. Lobanova, V. E. Yakovlev, “Effect of metal oxides on the properties of the emitting layer of a lead silicate glass,” Sov. J. Glass Phys. Chem. 7, 480–485 (1982).
  15. G. E. Hill, “Secondary electron emission and compositional studies on channel plate glass surfaces,” Adv. Electron. Electron. Phys. 40A, 153–165 (1976).
    [CrossRef]
  16. G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, R. Rameshan, M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
    [CrossRef]
  17. T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
    [CrossRef]
  18. G. T. Mearini, I. L. Krainsky, J. A. Dayton, “Stable secondary electron emission from chemical vapor deposited diamond films coated with alkali-halides,” Appl. Phys. Lett. 66, 242–244 (1995).
    [CrossRef]
  19. S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. I. Leaching kinetics,” J. Am. Ceram. Soc. 61, 287–292 (1978).
    [CrossRef]
  20. S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. II. Concentration profiles,” J. Am. Ceram. Soc. 61, 292–294 (1978).
    [CrossRef]
  21. S. M. Budd, “The mechanisms of chemical reaction between silicate glass and attacking agents,” Phys. Chem. Glasses 2, 111–114 (1961).
  22. T. M. El-Shamy, “The rate determining step in the dealkalisation of silicate glasses,” Phys. Chem. Glasses 14, 18–19 (1973).
  23. S. Wood, J. R. Blachere, “Infrared reflectance spectra of lead glasses corroded in acid,” J. Am. Ceram. Soc. 59, 470–472 (1976).
    [CrossRef]
  24. Photonis Imaging Senors, B.P. 520, Avenue Roger Roncier, 19106 Brive, France.
  25. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1998).
  26. E. H. Eberhardt, “Parameters pertaining to microchannel plates and microchannel plate devices,” (ITT Electro-Optical Products Division, Fort Wayne, Ind., 1980).
  27. W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of surface potential on the kinetics of glass reactions with aqueous solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
    [CrossRef]
  28. A. N. Brunton, G. W. Fraser, J. E. Lees, I. C. E. Tureu, “Metrology and modeling of microchannel plate x-ray optics,” Appl. Opt. 36, 5461–5470 (1997).
    [CrossRef] [PubMed]
  29. O. H. W. Siegmund, E. Everman, J. Vallerga, M. Lampton, “Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates,” in Optoelectronic Technologies for Remote Sensing from Space, J. S. Seeley, S. C. Bowyer, eds., Proc. SPIE868, 18–24 (1988).
    [CrossRef]
  30. N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
    [CrossRef]
  31. G. W. Fraser, J. F. Pearson, J. E. Lees, “Evaluation of long life (L2) microchannel plates for x-ray photon counting,” IEEE Trans. Nucl. Sci. 35, 529–533, (1988).
    [CrossRef]
  32. Burle Industries, 1000 New Holland Avenue, Lancaster, Pa. 17601–5688.
  33. O. H. W. Siegmund, “FUSE flight detector test summary,” presented at the FUSE Detector Comprehensive Design Review, Space Sciences Laboratory, University of California, Berkeley, Berkeley, Calif., 18 April 1996.
  34. D. J. Sahnow, “The FUSE detectors: on orbit use and lessons learned,” in Future EUV/UV Space Astrophysics Missions and Instrumentation, J. C. Blades, O. H. W. Siegmund, eds., Proc. SPIE4854, 610–619 (2003).
    [CrossRef]

2001 (1)

M. Schwartz, R. J. Berry, “Ab initio investigation of substituent effects on bond dissociation ethalpies in siloxanes and silanols,” J. Mol. Struct. 538, 9–17 (2001).
[CrossRef]

1997 (2)

1995 (1)

G. T. Mearini, I. L. Krainsky, J. A. Dayton, “Stable secondary electron emission from chemical vapor deposited diamond films coated with alkali-halides,” Appl. Phys. Lett. 66, 242–244 (1995).
[CrossRef]

1994 (1)

G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, R. Rameshan, M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
[CrossRef]

1993 (1)

D. J. Lucas, L. A. Curtiss, “Theoretical study of the silicon-oxygen hydrides SiOHn (n = 0–4) and SiOH n+ (n = 0–5): dissociation energies, ionization energies, enthalpies of formation and proton affinities,” J. Chem. Phys. 99, 6697–6703 (1993).
[CrossRef]

1992 (3)

Y. Hayashi, K. Matsumoto, “Determination of surface silanol group on silicate glasses using static SIMS,” J. Ceram. Soc. Jpn. 100, 1038–1041 (1992).
[CrossRef]

K. K. Sidorin, A. L. Shakhmin, A. M. Tyutikov, V. N. Makhov, “Electron structure of lead-silicate glasses,” Opt. Spectrosc. 72, 89–93 (1992).

A. M. Tyutikov, A. L. Shakhmin, “Secondary electron emission from lead silicate glasses considered from the point of view of the plasmon theory of emission,” Sov. Phys. Solid State 34, 1549–1552 (1992).

1991 (1)

J. J. Fijol, A. M. Then, G. W. Tasker, “Secondary electron yield of SiO2 and Si3N4 films for continuous dynode electron multipliers,” Appl. Surf. Sci. 48/49, 464–471 (1991).
[CrossRef]

1990 (1)

A. M. Then, C. G. Pantano, “Formation and behavior of surface layers on electron emission glasses,” J. Non-Cryst. Solids 120, 178–187 (1990).
[CrossRef]

1988 (1)

G. W. Fraser, J. F. Pearson, J. E. Lees, “Evaluation of long life (L2) microchannel plates for x-ray photon counting,” IEEE Trans. Nucl. Sci. 35, 529–533, (1988).
[CrossRef]

1984 (1)

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods 224, 272–286 (1984).
[CrossRef]

1982 (1)

A. M. Tyutikov, M. N. Toiseva, V. N. Polukhin, N. V. Lobanova, V. E. Yakovlev, “Effect of metal oxides on the properties of the emitting layer of a lead silicate glass,” Sov. J. Glass Phys. Chem. 7, 480–485 (1982).

1979 (2)

A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of surface potential on the kinetics of glass reactions with aqueous solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

1978 (2)

S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. I. Leaching kinetics,” J. Am. Ceram. Soc. 61, 287–292 (1978).
[CrossRef]

S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. II. Concentration profiles,” J. Am. Ceram. Soc. 61, 292–294 (1978).
[CrossRef]

1976 (2)

G. E. Hill, “Secondary electron emission and compositional studies on channel plate glass surfaces,” Adv. Electron. Electron. Phys. 40A, 153–165 (1976).
[CrossRef]

S. Wood, J. R. Blachere, “Infrared reflectance spectra of lead glasses corroded in acid,” J. Am. Ceram. Soc. 59, 470–472 (1976).
[CrossRef]

1975 (1)

G. A. Ausman, F. B. McLean, “Electron-hole pair creation energy in SiO2,” Appl. Phys. Lett. 26, 173–175 (1975).
[CrossRef]

1973 (2)

A. G. Revesz, “Noncrystalline silicon dioxide films on silicon: a review,” J. Non-Cryst. Solids 11, 309–330 (1973).
[CrossRef]

T. M. El-Shamy, “The rate determining step in the dealkalisation of silicate glasses,” Phys. Chem. Glasses 14, 18–19 (1973).

1961 (1)

S. M. Budd, “The mechanisms of chemical reaction between silicate glass and attacking agents,” Phys. Chem. Glasses 2, 111–114 (1961).

Ausman, G. A.

G. A. Ausman, F. B. McLean, “Electron-hole pair creation energy in SiO2,” Appl. Phys. Lett. 26, 173–175 (1975).
[CrossRef]

Bannister, N. P.

N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
[CrossRef]

Barstow, M. A.

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods 224, 272–286 (1984).
[CrossRef]

N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
[CrossRef]

Bekker, T. L.

T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
[CrossRef]

Berry, R. J.

M. Schwartz, R. J. Berry, “Ab initio investigation of substituent effects on bond dissociation ethalpies in siloxanes and silanols,” J. Mol. Struct. 538, 9–17 (2001).
[CrossRef]

Blachere, J. R.

S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. I. Leaching kinetics,” J. Am. Ceram. Soc. 61, 287–292 (1978).
[CrossRef]

S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. II. Concentration profiles,” J. Am. Ceram. Soc. 61, 292–294 (1978).
[CrossRef]

S. Wood, J. R. Blachere, “Infrared reflectance spectra of lead glasses corroded in acid,” J. Am. Ceram. Soc. 59, 470–472 (1976).
[CrossRef]

Brunton, A. N.

Budd, S. M.

S. M. Budd, “The mechanisms of chemical reaction between silicate glass and attacking agents,” Phys. Chem. Glasses 2, 111–114 (1961).

Curtiss, L. A.

D. J. Lucas, L. A. Curtiss, “Theoretical study of the silicon-oxygen hydrides SiOHn (n = 0–4) and SiOH n+ (n = 0–5): dissociation energies, ionization energies, enthalpies of formation and proton affinities,” J. Chem. Phys. 99, 6697–6703 (1993).
[CrossRef]

Dayton, J. A.

G. T. Mearini, I. L. Krainsky, J. A. Dayton, “Stable secondary electron emission from chemical vapor deposited diamond films coated with alkali-halides,” Appl. Phys. Lett. 66, 242–244 (1995).
[CrossRef]

G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, R. Rameshan, M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
[CrossRef]

T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
[CrossRef]

Eberhardt, E. H.

E. H. Eberhardt, “Parameters pertaining to microchannel plates and microchannel plate devices,” (ITT Electro-Optical Products Division, Fort Wayne, Ind., 1980).

Edelstein, J.

R. Hemphill, J. Edelstein, D. Rogers, “Chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” Appl. Opt. 36, 1421–1426 (1997).
[CrossRef] [PubMed]

R. Hemphill, J. Edelstein, “Analysis of a chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” in Future EUV/UV Space Astrophysics Missions and Instrumentation, J. C. Blades, O. H. W. Siegmund, eds.Proc. SPIE4854, 577–582 (2003).
[CrossRef]

El-Shamy, T. M.

T. M. El-Shamy, “The rate determining step in the dealkalisation of silicate glasses,” Phys. Chem. Glasses 14, 18–19 (1973).

Everman, E.

O. H. W. Siegmund, E. Everman, J. Vallerga, M. Lampton, “Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates,” in Optoelectronic Technologies for Remote Sensing from Space, J. S. Seeley, S. C. Bowyer, eds., Proc. SPIE868, 18–24 (1988).
[CrossRef]

Fijol, J. J.

J. J. Fijol, A. M. Then, G. W. Tasker, “Secondary electron yield of SiO2 and Si3N4 films for continuous dynode electron multipliers,” Appl. Surf. Sci. 48/49, 464–471 (1991).
[CrossRef]

File, D.

T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
[CrossRef]

Fraser, G. W.

A. N. Brunton, G. W. Fraser, J. E. Lees, I. C. E. Tureu, “Metrology and modeling of microchannel plate x-ray optics,” Appl. Opt. 36, 5461–5470 (1997).
[CrossRef] [PubMed]

G. W. Fraser, J. F. Pearson, J. E. Lees, “Evaluation of long life (L2) microchannel plates for x-ray photon counting,” IEEE Trans. Nucl. Sci. 35, 529–533, (1988).
[CrossRef]

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods 224, 272–286 (1984).
[CrossRef]

N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
[CrossRef]

Furth, W. F.

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of surface potential on the kinetics of glass reactions with aqueous solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

Gilmour, A. S.

T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
[CrossRef]

Hayashi, Y.

Y. Hayashi, K. Matsumoto, “Determination of surface silanol group on silicate glasses using static SIMS,” J. Ceram. Soc. Jpn. 100, 1038–1041 (1992).
[CrossRef]

Hemphill, R.

R. Hemphill, J. Edelstein, D. Rogers, “Chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” Appl. Opt. 36, 1421–1426 (1997).
[CrossRef] [PubMed]

R. Hemphill, J. Edelstein, “Analysis of a chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” in Future EUV/UV Space Astrophysics Missions and Instrumentation, J. C. Blades, O. H. W. Siegmund, eds.Proc. SPIE4854, 577–582 (2003).
[CrossRef]

Hill, G. E.

G. E. Hill, “Secondary electron emission and compositional studies on channel plate glass surfaces,” Adv. Electron. Electron. Phys. 40A, 153–165 (1976).
[CrossRef]

Koroley, N. V.

A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).

Krainsky, I. L.

G. T. Mearini, I. L. Krainsky, J. A. Dayton, “Stable secondary electron emission from chemical vapor deposited diamond films coated with alkali-halides,” Appl. Phys. Lett. 66, 242–244 (1995).
[CrossRef]

G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, R. Rameshan, M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
[CrossRef]

T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
[CrossRef]

Lampton, M.

O. H. W. Siegmund, E. Everman, J. Vallerga, M. Lampton, “Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates,” in Optoelectronic Technologies for Remote Sensing from Space, J. S. Seeley, S. C. Bowyer, eds., Proc. SPIE868, 18–24 (1988).
[CrossRef]

Lapington, J. S.

N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
[CrossRef]

Lees, J. E.

A. N. Brunton, G. W. Fraser, J. E. Lees, I. C. E. Tureu, “Metrology and modeling of microchannel plate x-ray optics,” Appl. Opt. 36, 5461–5470 (1997).
[CrossRef] [PubMed]

G. W. Fraser, J. F. Pearson, J. E. Lees, “Evaluation of long life (L2) microchannel plates for x-ray photon counting,” IEEE Trans. Nucl. Sci. 35, 529–533, (1988).
[CrossRef]

Lewis, M.

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods 224, 272–286 (1984).
[CrossRef]

Lobanova, N. V.

A. M. Tyutikov, M. N. Toiseva, V. N. Polukhin, N. V. Lobanova, V. E. Yakovlev, “Effect of metal oxides on the properties of the emitting layer of a lead silicate glass,” Sov. J. Glass Phys. Chem. 7, 480–485 (1982).

A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).

Lucas, D. J.

D. J. Lucas, L. A. Curtiss, “Theoretical study of the silicon-oxygen hydrides SiOHn (n = 0–4) and SiOH n+ (n = 0–5): dissociation energies, ionization energies, enthalpies of formation and proton affinities,” J. Chem. Phys. 99, 6697–6703 (1993).
[CrossRef]

Makhov, V. N.

K. K. Sidorin, A. L. Shakhmin, A. M. Tyutikov, V. N. Makhov, “Electron structure of lead-silicate glasses,” Opt. Spectrosc. 72, 89–93 (1992).

Matsumoto, K.

Y. Hayashi, K. Matsumoto, “Determination of surface silanol group on silicate glasses using static SIMS,” J. Ceram. Soc. Jpn. 100, 1038–1041 (1992).
[CrossRef]

McLean, F. B.

G. A. Ausman, F. B. McLean, “Electron-hole pair creation energy in SiO2,” Appl. Phys. Lett. 26, 173–175 (1975).
[CrossRef]

Mearini, G.

T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
[CrossRef]

Mearini, G. T.

G. T. Mearini, I. L. Krainsky, J. A. Dayton, “Stable secondary electron emission from chemical vapor deposited diamond films coated with alkali-halides,” Appl. Phys. Lett. 66, 242–244 (1995).
[CrossRef]

G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, R. Rameshan, M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
[CrossRef]

Mularie, W. M.

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of surface potential on the kinetics of glass reactions with aqueous solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

Pantano, C. G.

A. M. Then, C. G. Pantano, “Formation and behavior of surface layers on electron emission glasses,” J. Non-Cryst. Solids 120, 178–187 (1990).
[CrossRef]

Pearson, J. F.

G. W. Fraser, J. F. Pearson, J. E. Lees, “Evaluation of long life (L2) microchannel plates for x-ray photon counting,” IEEE Trans. Nucl. Sci. 35, 529–533, (1988).
[CrossRef]

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods 224, 272–286 (1984).
[CrossRef]

N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
[CrossRef]

Polukhin, V. N.

A. M. Tyutikov, M. N. Toiseva, V. N. Polukhin, N. V. Lobanova, V. E. Yakovlev, “Effect of metal oxides on the properties of the emitting layer of a lead silicate glass,” Sov. J. Glass Phys. Chem. 7, 480–485 (1982).

A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).

Rameshan, R.

G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, R. Rameshan, M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
[CrossRef]

T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
[CrossRef]

Revesz, A. G.

A. G. Revesz, “Noncrystalline silicon dioxide films on silicon: a review,” J. Non-Cryst. Solids 11, 309–330 (1973).
[CrossRef]

Rogers, D.

Rose, M. F.

G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, R. Rameshan, M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
[CrossRef]

T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
[CrossRef]

Sahnow, D. J.

D. J. Sahnow, “The FUSE detectors: on orbit use and lessons learned,” in Future EUV/UV Space Astrophysics Missions and Instrumentation, J. C. Blades, O. H. W. Siegmund, eds., Proc. SPIE4854, 610–619 (2003).
[CrossRef]

Sanderson, B. S.

N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
[CrossRef]

Schwartz, M.

M. Schwartz, R. J. Berry, “Ab initio investigation of substituent effects on bond dissociation ethalpies in siloxanes and silanols,” J. Mol. Struct. 538, 9–17 (2001).
[CrossRef]

Shakhmin, A. L.

A. M. Tyutikov, A. L. Shakhmin, “Secondary electron emission from lead silicate glasses considered from the point of view of the plasmon theory of emission,” Sov. Phys. Solid State 34, 1549–1552 (1992).

K. K. Sidorin, A. L. Shakhmin, A. M. Tyutikov, V. N. Makhov, “Electron structure of lead-silicate glasses,” Opt. Spectrosc. 72, 89–93 (1992).

Sidorin, K. K.

K. K. Sidorin, A. L. Shakhmin, A. M. Tyutikov, V. N. Makhov, “Electron structure of lead-silicate glasses,” Opt. Spectrosc. 72, 89–93 (1992).

Siegmund, O. H. W.

O. H. W. Siegmund, E. Everman, J. Vallerga, M. Lampton, “Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates,” in Optoelectronic Technologies for Remote Sensing from Space, J. S. Seeley, S. C. Bowyer, eds., Proc. SPIE868, 18–24 (1988).
[CrossRef]

O. H. W. Siegmund, “FUSE flight detector test summary,” presented at the FUSE Detector Comprehensive Design Review, Space Sciences Laboratory, University of California, Berkeley, Berkeley, Calif., 18 April 1996.

Spragg, J. E.

N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
[CrossRef]

Tandy, J. A.

N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
[CrossRef]

Tasker, G. W.

J. J. Fijol, A. M. Then, G. W. Tasker, “Secondary electron yield of SiO2 and Si3N4 films for continuous dynode electron multipliers,” Appl. Surf. Sci. 48/49, 464–471 (1991).
[CrossRef]

Then, A. M.

J. J. Fijol, A. M. Then, G. W. Tasker, “Secondary electron yield of SiO2 and Si3N4 films for continuous dynode electron multipliers,” Appl. Surf. Sci. 48/49, 464–471 (1991).
[CrossRef]

A. M. Then, C. G. Pantano, “Formation and behavior of surface layers on electron emission glasses,” J. Non-Cryst. Solids 120, 178–187 (1990).
[CrossRef]

Toiseva, M. N.

A. M. Tyutikov, M. N. Toiseva, V. N. Polukhin, N. V. Lobanova, V. E. Yakovlev, “Effect of metal oxides on the properties of the emitting layer of a lead silicate glass,” Sov. J. Glass Phys. Chem. 7, 480–485 (1982).

A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).

Tureu, I. C. E.

Tyutikov, A. M.

A. M. Tyutikov, A. L. Shakhmin, “Secondary electron emission from lead silicate glasses considered from the point of view of the plasmon theory of emission,” Sov. Phys. Solid State 34, 1549–1552 (1992).

K. K. Sidorin, A. L. Shakhmin, A. M. Tyutikov, V. N. Makhov, “Electron structure of lead-silicate glasses,” Opt. Spectrosc. 72, 89–93 (1992).

A. M. Tyutikov, M. N. Toiseva, V. N. Polukhin, N. V. Lobanova, V. E. Yakovlev, “Effect of metal oxides on the properties of the emitting layer of a lead silicate glass,” Sov. J. Glass Phys. Chem. 7, 480–485 (1982).

A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).

Vallerga, J.

O. H. W. Siegmund, E. Everman, J. Vallerga, M. Lampton, “Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates,” in Optoelectronic Technologies for Remote Sensing from Space, J. S. Seeley, S. C. Bowyer, eds., Proc. SPIE868, 18–24 (1988).
[CrossRef]

Wang, Y. X.

G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, R. Rameshan, M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
[CrossRef]

Westwood, A. R. C.

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of surface potential on the kinetics of glass reactions with aqueous solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

Whiteley, M. J.

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods 224, 272–286 (1984).
[CrossRef]

Wood, S.

S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. I. Leaching kinetics,” J. Am. Ceram. Soc. 61, 287–292 (1978).
[CrossRef]

S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. II. Concentration profiles,” J. Am. Ceram. Soc. 61, 292–294 (1978).
[CrossRef]

S. Wood, J. R. Blachere, “Infrared reflectance spectra of lead glasses corroded in acid,” J. Am. Ceram. Soc. 59, 470–472 (1976).
[CrossRef]

Yakovlev, V. E.

A. M. Tyutikov, M. N. Toiseva, V. N. Polukhin, N. V. Lobanova, V. E. Yakovlev, “Effect of metal oxides on the properties of the emitting layer of a lead silicate glass,” Sov. J. Glass Phys. Chem. 7, 480–485 (1982).

A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).

Adv. Electron. Electron. Phys. (1)

G. E. Hill, “Secondary electron emission and compositional studies on channel plate glass surfaces,” Adv. Electron. Electron. Phys. 40A, 153–165 (1976).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

G. A. Ausman, F. B. McLean, “Electron-hole pair creation energy in SiO2,” Appl. Phys. Lett. 26, 173–175 (1975).
[CrossRef]

G. T. Mearini, I. L. Krainsky, J. A. Dayton, “Stable secondary electron emission from chemical vapor deposited diamond films coated with alkali-halides,” Appl. Phys. Lett. 66, 242–244 (1995).
[CrossRef]

Appl. Surf. Sci. (1)

J. J. Fijol, A. M. Then, G. W. Tasker, “Secondary electron yield of SiO2 and Si3N4 films for continuous dynode electron multipliers,” Appl. Surf. Sci. 48/49, 464–471 (1991).
[CrossRef]

Fiz. Khim. (1)

A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).

IEEE Trans. Nucl. Sci. (1)

G. W. Fraser, J. F. Pearson, J. E. Lees, “Evaluation of long life (L2) microchannel plates for x-ray photon counting,” IEEE Trans. Nucl. Sci. 35, 529–533, (1988).
[CrossRef]

J. Am. Ceram. Soc. (3)

S. Wood, J. R. Blachere, “Infrared reflectance spectra of lead glasses corroded in acid,” J. Am. Ceram. Soc. 59, 470–472 (1976).
[CrossRef]

S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. I. Leaching kinetics,” J. Am. Ceram. Soc. 61, 287–292 (1978).
[CrossRef]

S. Wood, J. R. Blachere, “Corrosion of lead glasses in acid media. II. Concentration profiles,” J. Am. Ceram. Soc. 61, 292–294 (1978).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

Y. Hayashi, K. Matsumoto, “Determination of surface silanol group on silicate glasses using static SIMS,” J. Ceram. Soc. Jpn. 100, 1038–1041 (1992).
[CrossRef]

J. Chem. Phys. (1)

D. J. Lucas, L. A. Curtiss, “Theoretical study of the silicon-oxygen hydrides SiOHn (n = 0–4) and SiOH n+ (n = 0–5): dissociation energies, ionization energies, enthalpies of formation and proton affinities,” J. Chem. Phys. 99, 6697–6703 (1993).
[CrossRef]

J. Mater. Sci. (1)

W. M. Mularie, W. F. Furth, A. R. C. Westwood, “Influence of surface potential on the kinetics of glass reactions with aqueous solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
[CrossRef]

J. Mol. Struct. (1)

M. Schwartz, R. J. Berry, “Ab initio investigation of substituent effects on bond dissociation ethalpies in siloxanes and silanols,” J. Mol. Struct. 538, 9–17 (2001).
[CrossRef]

J. Non-Cryst. Solids (2)

A. G. Revesz, “Noncrystalline silicon dioxide films on silicon: a review,” J. Non-Cryst. Solids 11, 309–330 (1973).
[CrossRef]

A. M. Then, C. G. Pantano, “Formation and behavior of surface layers on electron emission glasses,” J. Non-Cryst. Solids 120, 178–187 (1990).
[CrossRef]

Nucl. Instrum. Methods (1)

G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods 224, 272–286 (1984).
[CrossRef]

Opt. Spectrosc. (1)

K. K. Sidorin, A. L. Shakhmin, A. M. Tyutikov, V. N. Makhov, “Electron structure of lead-silicate glasses,” Opt. Spectrosc. 72, 89–93 (1992).

Phys. Chem. Glasses (2)

S. M. Budd, “The mechanisms of chemical reaction between silicate glass and attacking agents,” Phys. Chem. Glasses 2, 111–114 (1961).

T. M. El-Shamy, “The rate determining step in the dealkalisation of silicate glasses,” Phys. Chem. Glasses 14, 18–19 (1973).

Sov. J. Glass Phys. Chem. (1)

A. M. Tyutikov, M. N. Toiseva, V. N. Polukhin, N. V. Lobanova, V. E. Yakovlev, “Effect of metal oxides on the properties of the emitting layer of a lead silicate glass,” Sov. J. Glass Phys. Chem. 7, 480–485 (1982).

Sov. Phys. Solid State (1)

A. M. Tyutikov, A. L. Shakhmin, “Secondary electron emission from lead silicate glasses considered from the point of view of the plasmon theory of emission,” Sov. Phys. Solid State 34, 1549–1552 (1992).

Thin Solid Films (1)

G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, R. Rameshan, M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
[CrossRef]

Other (10)

T. L. Bekker, J. A. Dayton, A. S. Gilmour, I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
[CrossRef]

O. H. W. Siegmund, E. Everman, J. Vallerga, M. Lampton, “Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates,” in Optoelectronic Technologies for Remote Sensing from Space, J. S. Seeley, S. C. Bowyer, eds., Proc. SPIE868, 18–24 (1988).
[CrossRef]

N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, V. I. Pustovoy, eds., Proc. SPIE4140, 199–210 (2000).
[CrossRef]

Photonis Imaging Senors, B.P. 520, Avenue Roger Roncier, 19106 Brive, France.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1998).

E. H. Eberhardt, “Parameters pertaining to microchannel plates and microchannel plate devices,” (ITT Electro-Optical Products Division, Fort Wayne, Ind., 1980).

Burle Industries, 1000 New Holland Avenue, Lancaster, Pa. 17601–5688.

O. H. W. Siegmund, “FUSE flight detector test summary,” presented at the FUSE Detector Comprehensive Design Review, Space Sciences Laboratory, University of California, Berkeley, Berkeley, Calif., 18 April 1996.

D. J. Sahnow, “The FUSE detectors: on orbit use and lessons learned,” in Future EUV/UV Space Astrophysics Missions and Instrumentation, J. C. Blades, O. H. W. Siegmund, eds., Proc. SPIE4854, 610–619 (2003).
[CrossRef]

R. Hemphill, J. Edelstein, “Analysis of a chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” in Future EUV/UV Space Astrophysics Missions and Instrumentation, J. C. Blades, O. H. W. Siegmund, eds.Proc. SPIE4854, 577–582 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Rate kinetics of alkali removal during the nitric acid DIP. (a), (b), (c) Amounts of Pb, K, and Rb, respectively, removed from a total exposed MCP glass area of∼0.2 mm2; sqrt, square root.

Fig. 2
Fig. 2

Quantum efficiency of a Z stack MCP detector before (◆) and after (■) an optimized DIP for the top MCP that uses nitric acid. The resulting QDE is comparable to that of a KBr-coated photocathode. The absolute and relative QDE measurement errors are estimated to be 20% and 5%, respectively.

Fig. 3
Fig. 3

Scanning-electron microscope photographs of the MCP channels (a) before2 and (b) after acetic acid and (c) after deionized water DIPs.

Tables (2)

Tables Icon

Table 1 Effect of Acetic Acid DIP on Low Noise Galileo MCP QDEa

Tables Icon

Table 2 Effect of Deionized Water DIP on Low-Noise Galileo MCP QDEa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SiOSiO-M++H+SiOSiOH+M+,modified glasssolutionglassmetal in solution
SiOSiOH+OH-SiOH+O-SiOH.glasssolutionglassglass in solution

Metrics