Abstract

Single-longitudinal-mode operation of a gain-switched Cr4+ laser, with output energy as much as 1.9 mJ, is reported from two different coupled-cavity resonators. A prism-coupled cavity and a modified Michelson interferometric grazing-incidence (MIGI) cavity was pumped by a multilongitudinal-mode Q-switched Nd:YAG laser; the modified MIGI cavity obtained 100-MHz-bandwidth laser output tunable between 1150 and 1330 nm. Conversion efficiency of 3.2% (slope efficiency of 4%) was achieved, with a pump threshold density as small as 0.2 J/cm2. Mode spacing of the laser output in multilongitudinal mode showed increased mode spacing in agreement with a coupled-cavity theory.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
    [CrossRef]
  2. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
    [CrossRef]
  3. A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
    [CrossRef]
  4. V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
    [CrossRef]
  5. A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
    [CrossRef]
  6. B. E. Bouma, G. J. Tearney, I. P. Billinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
    [CrossRef] [PubMed]
  7. I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 72–75.
  8. A. J. Tiffany, I. T. McKinnie, D. M. Warrington, “Pulse amplification of a single-frequency Cr:forsterite laser,” Appl. Opt. 37, 4907–4913 (1998).
    [CrossRef]
  9. I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
    [CrossRef] [PubMed]
  10. Z. X. Jiang, I. T. McKinnie, L. A. W. Gloster, T. A. King, “Temporal and kinetic studies of chromium forsterite oscillators with 1064 nm laser excitation,” Pure Appl. Opt. 5, 77–88 (1996).
    [CrossRef]
  11. T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
    [CrossRef]
  12. G. Z. Zhang, D. W. Tokaryk, “Lasing threshold reduction in grating-tuned cavities,” Appl. Opt. 36, 5855–5858 (1997).
    [CrossRef] [PubMed]
  13. J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, T. A. King, W. Hogervorst, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
    [CrossRef] [PubMed]
  14. D. Binks, A. W. Gloster, T. A. King, I. T. McKinnie, “Frequency locking of a pulsed single-longitudinal-mode laser in a coupled-cavity resonator,” Appl. Opt. 36, 9371–9377 (1997).
    [CrossRef]
  15. D. Binks, D. K. Ko, L. A. W. Gloster, T. A. King, “Laser mode selection in multiarm grazing-incidence cavities,” J. Opt. Soc. Am. B 15, 2395–2403 (1998).
    [CrossRef]
  16. D. Binks, D. K. Ko, L. A. W. Gloster, T. A. King, “Pulsed single-mode laser oscillation in a new coupled cavity design,” Opt. Commun. 146, 173–176 (1998).
    [CrossRef]
  17. D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
    [CrossRef]
  18. N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti: Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
    [CrossRef]

1998 (3)

1997 (3)

1996 (5)

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

Z. X. Jiang, I. T. McKinnie, L. A. W. Gloster, T. A. King, “Temporal and kinetic studies of chromium forsterite oscillators with 1064 nm laser excitation,” Pure Appl. Opt. 5, 77–88 (1996).
[CrossRef]

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

B. E. Bouma, G. J. Tearney, I. P. Billinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
[CrossRef] [PubMed]

1995 (1)

1990 (1)

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

1988 (3)

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
[CrossRef]

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti: Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[CrossRef]

1975 (1)

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

Agnesi, A.

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

Alfano, R. R.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Angert, N. B.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
[CrossRef]

Anzai, H.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Avtukh, A. S.

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
[CrossRef]

Barnes, J. C.

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti: Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[CrossRef]

Barnes, N. P.

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti: Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[CrossRef]

Baryshevskii, V. G.

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

Billinsky, I. P.

Binks, D.

Boon-Engering, J. M.

Borodin, N. I.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
[CrossRef]

Bouma, B. E.

Dell’Acqua, S.

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

Demidovich, S. A.

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

Fujii, T.

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

Fujimoto, J. G.

Garmash, V. M.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
[CrossRef]

Gayen, S. K.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Gloster, A. W.

Gloster, L. A. W.

Gobbi, P. G.

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

Golubovic, B.

Hanna, D. C.

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

Hogervorst, W.

Jiang, Z. X.

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

Z. X. Jiang, I. T. McKinnie, L. A. W. Gloster, T. A. King, “Temporal and kinetic studies of chromium forsterite oscillators with 1064 nm laser excitation,” Pure Appl. Opt. 5, 77–88 (1996).
[CrossRef]

Kärkkäinen, P. A.

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

Kimaev, A. E.

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

King, T. A.

Ko, D. K.

D. Binks, D. K. Ko, L. A. W. Gloster, T. A. King, “Pulsed single-mode laser oscillation in a new coupled cavity design,” Opt. Commun. 146, 173–176 (1998).
[CrossRef]

D. Binks, D. K. Ko, L. A. W. Gloster, T. A. King, “Laser mode selection in multiarm grazing-incidence cavities,” J. Opt. Soc. Am. B 15, 2395–2403 (1998).
[CrossRef]

Korzhik, M. V.

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

Livshits, M. G.

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

Lockard, G. E.

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti: Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[CrossRef]

McKinnie, I. T.

Meilman, M. L.

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

Mikhailov, V. P.

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
[CrossRef]

Minkov, B. I.

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

Nagano, M.

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

Nemoto, K.

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

Okhrimchuk, A. G.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
[CrossRef]

Petricevic, V.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Shestakov, A. V.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
[CrossRef]

Shitnyuk, V. A.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
[CrossRef]

Shkadarevich, A. P.

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

Siyuchenko, A. O.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
[CrossRef]

Tearney, G. J.

Tiffany, A. J.

A. J. Tiffany, I. T. McKinnie, D. M. Warrington, “Pulse amplification of a single-frequency Cr:forsterite laser,” Appl. Opt. 37, 4907–4913 (1998).
[CrossRef]

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 72–75.

Tokaryk, D. W.

van der Veer, W. E.

Voloshin, V. A.

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

Warrington, D. M.

A. J. Tiffany, I. T. McKinnie, D. M. Warrington, “Pulse amplification of a single-frequency Cr:forsterite laser,” Appl. Opt. 37, 4907–4913 (1998).
[CrossRef]

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 72–75.

Williams, J. A.

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti: Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[CrossRef]

Wyatt, R.

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

Yamagishi, K.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Zamaguchi, Y.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Zhang, G. Z.

Zhavoronkov, N. I.

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Zamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

N. P. Barnes, J. A. Williams, J. C. Barnes, G. E. Lockard, “A self-injection locked, Q-switched, line-narrowed Ti: Al2O3 laser,” IEEE J. Quantum Electron. 24, 1021–1028 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. Binks, D. K. Ko, L. A. W. Gloster, T. A. King, “Pulsed single-mode laser oscillation in a new coupled cavity design,” Opt. Commun. 146, 173–176 (1998).
[CrossRef]

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

Pure Appl. Opt. (1)

Z. X. Jiang, I. T. McKinnie, L. A. W. Gloster, T. A. King, “Temporal and kinetic studies of chromium forsterite oscillators with 1064 nm laser excitation,” Pure Appl. Opt. 5, 77–88 (1996).
[CrossRef]

Quantum Electron. (1)

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
[CrossRef]

Sov. J. Quantum Electron. (2)

V. G. Baryshevskii, V. A. Voloshin, S. A. Demidovich, A. E. Kimaev, M. V. Korzhik, M. G. Livshits, M. L. Meilman, B. I. Minkov, A. P. Shkadarevich, “Efficient flashlamp-pumped chromium-activated forsterite crystals laser tunable in the infrared range,” Sov. J. Quantum Electron. 20, 1297–1298 (1990).
[CrossRef]

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Shitnyuk, A. G. Okhrimchuk, A. O. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminium garnet crystals at wavelength in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 1, 73–74 (1988).
[CrossRef]

Other (1)

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity chromium forsterite laser,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 72–75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental configuration of the (a) PC cavity and (b) modified MIGI cavity. A, half-wave-plate polarizing attenuator; L, 500-mm focal-length lens; M1 and M3, high reflectors; M2, partial reflecting output coupler; M4, optional additional tuning mirror; M5–M6, intracavity partial reflector; P, intracavity prism.

Fig. 2
Fig. 2

SLM output energy of the prism coupled (filled circles) and modified MIGI-coupled cavity (open circles) versus pump energy.

Fig. 3
Fig. 3

Tuning curve of the SLM prism-coupled cavity (filled circles) and the modified MIGI-coupled cavity (open circles) versus output wavelength for a pump energy of 60 mJ.

Fig. 4
Fig. 4

Output spectrum of the SLM PC cavity. An etalon with a FSR of 5 GHz was used, leading to a bandwidth of 500 MHz.

Fig. 5
Fig. 5

Theoretical and experimental results of spectral laser output of the prism-coupled Cr:forsterite cavity. (a) Fractional loss (solid curve) with possible coupled-cavity modes (open circles), where filled circles represent modes with the smallest fractional loss. (b) Experimental longitudinal-mode spectrum.

Fig. 6
Fig. 6

Theoretical fractional loss calculations of the modified MIGI-coupled cavity. The intracavity optic M5–M6 has been moved toward the gain medium (a) 0 mm, (b) 0.1 mm, (c) 0.2 mm, (d) 0.3 mm, and (e) 0.4 mm, leading to an increase of the fractional loss value at the mode frequency.

Tables (1)

Tables Icon

Table 1 Summary of Mirror Reflectance and Optical Cavity Length Values for the PC and Modified MIGI Cavitiesa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g=rlrc exp-j2kl1-1.
L=11-gg*,
rc=r6+t62f6rCI1-r6f6rCI,
rCI=r5+t52rGf51-r5rGf5.
rCII=τr2f2+ρr3f3,

Metrics