Abstract

The thermal decay of a type I fiber Bragg grating written at 248 nm in boron-germanium codoped silica fiber was examined in terms of its reflectivity and Bragg wavelength change. In addition to the decay in reflectivity, which was observed, a shift in Bragg wavelength over the temperature range considered was seen. A mechanism for the decay in the reflectivity was developed and modeled according to a power law, and the results were compared with those from the aging curve approach. The wavelength shift was simulated by modification of the power law, which was also found to fit well to the experimental data. Temperature-induced reversible and irreversible changes in the grating characteristics were observed and considered to be a means to predict the working lifetime of the grating at comparatively low temperatures. Accelerated aging was also reviewed and compared in terms of reflectivity and Bragg wavelength shift. It was shown that the temperature-induced irreversible shift in the Bragg wavelengths could not be predicted by use of the isothermal decay of the refractive-index modulation. The results were discussed within the framework of the current theoretical approaches for predicting the stability of gratings of this type.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).
  2. R. Kashyap, Fiber Bragg Gratings, Optics and Photonics Series (Academic, San Diego, Calif., 1999).
  3. T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]
  4. S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
    [CrossRef]
  5. L. Dong, W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt. 36, 8222–8226 (1997).
    [CrossRef]
  6. S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
    [CrossRef]
  7. G. Brambilla, H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80, 3259–3261 (2002).
    [CrossRef]
  8. D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000).
    [CrossRef]
  9. I. Riant, B. Poumellec, “Thermal decay of gratings written in hydrogen-loaded germanosilicate fibres,” Electron. Lett. 34, 1603–1604 (1998).
    [CrossRef]
  10. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19, 1759–1765 (2002).
    [CrossRef]
  11. M. Fokine, “Thermal stability of chemical composition gratings in fluorine-germanium-doped silica fibers,” Opt. Lett. 27, 1016–1018 (2002).
    [CrossRef]
  12. D. L. Williams, R. P. Smith, “Accelerated lifetime tests on uv written intra-core gratings in boron germania codoped silica fibre,” Electron. Lett. 31, 2120–2121 (1995).
    [CrossRef]
  13. K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
    [CrossRef]
  14. Q. Wang, A. Hidayat, P. Niay, M. Douay, “Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193 nm,” J. Lightwave Technol. 18, 1078–1083 (2000).
    [CrossRef]
  15. T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” in Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, U.K., 2002), pp. 147–149.
  16. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt. 40, 2632–2641 (2002).
    [CrossRef]
  17. M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Lab. Tech. J.July–Sept., 139–147 (1998).
  18. B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
    [CrossRef]
  19. S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
    [CrossRef]

2002 (4)

2001 (1)

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

2000 (2)

1998 (4)

I. Riant, B. Poumellec, “Thermal decay of gratings written in hydrogen-loaded germanosilicate fibres,” Electron. Lett. 34, 1603–1604 (1998).
[CrossRef]

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Lab. Tech. J.July–Sept., 139–147 (1998).

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

1997 (3)

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

L. Dong, W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt. 36, 8222–8226 (1997).
[CrossRef]

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

1995 (1)

D. L. Williams, R. P. Smith, “Accelerated lifetime tests on uv written intra-core gratings in boron germania codoped silica fibre,” Electron. Lett. 31, 2120–2121 (1995).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Baker, S. R.

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Baker, V.

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Bennion, I.

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

Brambilla, G.

G. Brambilla, H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80, 3259–3261 (2002).
[CrossRef]

Chisholm, K. E.

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

Copeland, L. R.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Lab. Tech. J.July–Sept., 139–147 (1998).

Dong, L.

Douay, M.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Fokine, M.

Forsyth, D. I.

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Goodchild, D.

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Grattan, K. T. V.

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” in Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, U.K., 2002), pp. 147–149.

Guo, J. Z. Y.

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Guofu, Q.

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Hidayat, A.

Judkins, J. B.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Lab. Tech. J.July–Sept., 139–147 (1998).

Kalli, K.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).

Kannan, S.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Lab. Tech. J.July–Sept., 139–147 (1998).

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings, Optics and Photonics Series (Academic, San Diego, Calif., 1999).

Lemaire, P. J.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Lab. Tech. J.July–Sept., 139–147 (1998).

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Liu, W. F.

LuValle, M. J.

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Lab. Tech. J.July–Sept., 139–147 (1998).

Mandal, J.

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” in Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, U.K., 2002), pp. 147–149.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Monoroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Niay, P.

Othonos, A.

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).

Pal, S.

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” in Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, U.K., 2002), pp. 147–149.

Poumellec, B.

Razafimahatratra, D.

Riant, I.

Rourke, H. N.

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

Rutt, H.

G. Brambilla, H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80, 3259–3261 (2002).
[CrossRef]

Smith, R. P.

D. L. Williams, R. P. Smith, “Accelerated lifetime tests on uv written intra-core gratings in boron germania codoped silica fibre,” Electron. Lett. 31, 2120–2121 (1995).
[CrossRef]

Sugden, K.

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

Sun, T.

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” in Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, U.K., 2002), pp. 147–149.

Wade, S. A.

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Wang, Q.

Williams, D. L.

D. L. Williams, R. P. Smith, “Accelerated lifetime tests on uv written intra-core gratings in boron germania codoped silica fibre,” Electron. Lett. 31, 2120–2121 (1995).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

G. Brambilla, H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80, 3259–3261 (2002).
[CrossRef]

Bell Lab. Tech. J. (1)

M. J. LuValle, L. R. Copeland, S. Kannan, J. B. Judkins, P. J. Lemaire, “A strategy for extrapolation in accelerated testing,” Bell Lab. Tech. J.July–Sept., 139–147 (1998).

Electron. Lett. (2)

D. L. Williams, R. P. Smith, “Accelerated lifetime tests on uv written intra-core gratings in boron germania codoped silica fibre,” Electron. Lett. 31, 2120–2121 (1995).
[CrossRef]

I. Riant, B. Poumellec, “Thermal decay of gratings written in hydrogen-loaded germanosilicate fibres,” Electron. Lett. 34, 1603–1604 (1998).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

J. Lightwave Technol. (3)

S. R. Baker, H. N. Rourke, V. Baker, D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[CrossRef]

S. Kannan, J. Z. Y. Guo, P. J. Lemaire, “Thermal stability analysis of uv-induced fiber Bragg gratings,” J. Lightwave Technol. 15, 1478–1483 (1997).
[CrossRef]

Q. Wang, A. Hidayat, P. Niay, M. Douay, “Influence of blanket postexposure on the thermal stability of the spectral characteristics of gratings written in a telecommunication fiber using light at 193 nm,” J. Lightwave Technol. 18, 1078–1083 (2000).
[CrossRef]

J. Non-Cryst. Solids (1)

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

K. E. Chisholm, K. Sugden, I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germanium co-doped fibre,” J. Phys. D 31, 61–64 (1998).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

S. A. Wade, D. I. Forsyth, Q. Guofu, K. T. V. Grattan, “Fiber optic sensor for dual measurement of temperature and strain using a combined fluorescent lifetime decay and fiber Bragg grating technique,” Rev. Sci. Instrum. 72, 3186–3190 (2001).
[CrossRef]

Other (3)

A. Othonos, K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).

R. Kashyap, Fiber Bragg Gratings, Optics and Photonics Series (Academic, San Diego, Calif., 1999).

T. Sun, S. Pal, J. Mandal, K. T. V. Grattan, “Fibre Bragg grating fabrication using fluoride excimer laser for sensing and communication applications,” in Central Laser Facility Annual Report 2001/2002 (Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire, U.K., 2002), pp. 147–149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Typical transmission characteristics of a FBG written at 248 nm in B-Ge codoped silica fiber.

Fig. 2
Fig. 2

Thermal degradation of the FBG, written in B-Ge codoped photosensitive fiber, with time in terms of the NICC at various temperatures.

Fig. 3
Fig. 3

Linear fit for the power-law decay coefficient, α.

Fig. 4
Fig. 4

Exponential fit for the power-law factor, A, on a linear scale.

Fig. 5
Fig. 5

Plot of the normalized ICC as a function of the demarcation energy, E d , for the grating. The frequency term (ν) used for this plot is 2.6 × 1014 Hz.

Fig. 6
Fig. 6

Distribution of activation energy plotted from the slope of Fig. 5. The symbols represent the demarcation energies actually sampled by the experiment.

Fig. 7
Fig. 7

Thermal degradation of the FBG with time in terms of the shift of the Bragg wavelength at various temperatures.

Fig. 8
Fig. 8

Prediction of thermal decay of FBGs in terms of reflectivity with initial reflectivity values of 99% and 90% at 100 °C, 200 °C, and 300 °C over a simulated period of 100 yrs.

Fig. 9
Fig. 9

Prediction of thermal decay of the FBG in terms of the shift in the Bragg wavelength over an estimated period of 100 yrs.

Fig. 10
Fig. 10

Comparison of accelerated aging in terms of reflectivity and the shift in the Bragg wavelength.

Fig. 11
Fig. 11

Prediction of thermal decay of the FBG at 200 °C according to the power law and master aging curve, including the reversible temperature-induced effect in the aging curve approach, over 25 yrs.

Fig. 12
Fig. 12

Comparison of the isothermal decay and the step-stress decay when one grating was kept at 200 °C for isothermal decay and the other was raised to 200 °C after being kept at 100 °C for 405 min.

Tables (2)

Tables Icon

Table 1 Comparisons of the Reflectivity Decay Factor and Coefficient of This Paper with Other Related Studies for Gratings Fabricated in Similar Fibers under Different Conditions

Tables Icon

Table 2 Comparisons of the Temperature-Induced Irreversible Bragg Wavelength Shift, Refractive-Index Modulation, Change in Effective Refractive Index, and the Visibility Factor of the Grating after Annealing at Various Temperatures

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δnmod=λ/πlnVtanh-1R1/2,
Δneff=Δλb2Λ,
R=1-Tmin,
ICC=tanh-1R1/2,
η=tanh-1Rt,T1/2/tanh-1R0,RT1/2,
η=1/1+At/t1α,
α=T/TR,
A=A0 expaT,
Ed=kBT lnνt,
ηEd=1/1+expEd-ΔE/kBTR,
λbt=λb0/1+Bt/t1β,
β=T/Tλ,
B=B0 expbT,
t2=expaTRT1/T2-1t1T1/T2,
t2=expbTλT1/T2-1t1T1/T2
ΔnmodT/Δnmod296 K=1+γT-296.

Metrics