Abstract

Sinusoidal chirps are introduced in fiber gratings to improve their performance as dispersion compensators and multichannel filters. The sinusoidally chirped fiber gratings exhibit a flattop spectrum with steep edges and high reflectivity. The bandwidth utilization defined as the ratio of -1:-30-dB bandwidth could be very high (>0.85). This structure can be applied to the sampled fiber gratings to enhance channel uniformity. We demonstrate 264 uniform channels with a 25-GHz-spacing for high-density-wavelength multiplexing applications. Multichannel dispersion compensations with seven uniform channels of 50-GHz-spacing in short fiber gratings are also demonstrated. The impact of possible fabrication errors on the spectra of the gratings is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. C. Silva, A. J. Seeds, P. J. Williams, “Terahertz span 60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photon. Technol. Lett. 13, 370–372 (2001).
    [Crossref]
  2. G. Vareille, F. Petel, J. F. Marceau, “3.65 Tbit/s (365 × 11.6 Gbit/s) transmission experiment over 6850 km using 22.2 GHz channel spacing in NRZ format,” in 27th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, Amsterdam, 2001), postdeadline paper, vol. 6, pp. 14–15.
  3. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [Crossref]
  4. T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, H. Suganuma, “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WDD84.
  5. W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, U. Koren, “Single frequency erbium fiber external cavity single-mode semiconductor fiber grating laser,” Appl. Phys. Lett. 66, 3422–3424 (1995).
    [Crossref]
  6. S. V. Chernikov, J. R. Taylor, R. Kashyap, “Integrated all optical fiber source of multigigahertz soliton pulse train,” Electron. Lett. 29, 1788–1789 (1993).
    [Crossref]
  7. J.-L. Archambault, S. G. Grubb, “Fiber grating in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
    [Crossref]
  8. R. Kashyap, R. Wyatt, P. F. Mckee, “Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
    [Crossref]
  9. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filter in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
    [Crossref] [PubMed]
  10. M. K. Durkin, R. Feced, C. Ramirez, M. N. Zervas, “Advanced fiber Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, Vol. 1 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper TuH4–1.
  11. H. Storøy, H. E. Engan, B. Sahlgren, R. Stubbe, “Position weighting of fiber Bragg gratings for bandpass filtering,” Opt. Lett. 22, 784–786 (1997).
    [Crossref] [PubMed]
  12. A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
    [Crossref]
  13. M. Ibsen, R. Feced, P. Petropoulos, M. N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Optical Fiber Communication Conference, Vol. 4 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper PD21–1.
  14. X. Chen, C. Fan, Y. Luo, S. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1501–1503 (2000).
    [Crossref]
  15. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
    [Crossref]
  16. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
    [Crossref]
  17. J.-F. Lemieux, A. Bellemare, C. Latrasse, M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating,” Electron. Lett. 35, 904–906 (1999).
    [Crossref]
  18. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995).
    [Crossref]
  19. J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
    [Crossref]
  20. M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
    [Crossref]
  21. M. Yamada, K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478 (1987).
    [Crossref] [PubMed]
  22. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [Crossref]
  23. K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
    [Crossref]

2001 (1)

C. F. C. Silva, A. J. Seeds, P. J. Williams, “Terahertz span 60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photon. Technol. Lett. 13, 370–372 (2001).
[Crossref]

2000 (2)

X. Chen, C. Fan, Y. Luo, S. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1501–1503 (2000).
[Crossref]

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
[Crossref]

1999 (3)

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[Crossref]

J.-F. Lemieux, A. Bellemare, C. Latrasse, M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
[Crossref]

1998 (2)

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

1997 (4)

H. Storøy, H. E. Engan, B. Sahlgren, R. Stubbe, “Position weighting of fiber Bragg gratings for bandpass filtering,” Opt. Lett. 22, 784–786 (1997).
[Crossref] [PubMed]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

J.-L. Archambault, S. G. Grubb, “Fiber grating in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
[Crossref]

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

1996 (1)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[Crossref]

1995 (2)

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, U. Koren, “Single frequency erbium fiber external cavity single-mode semiconductor fiber grating laser,” Appl. Phys. Lett. 66, 3422–3424 (1995).
[Crossref]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995).
[Crossref]

1993 (2)

S. V. Chernikov, J. R. Taylor, R. Kashyap, “Integrated all optical fiber source of multigigahertz soliton pulse train,” Electron. Lett. 29, 1788–1789 (1993).
[Crossref]

R. Kashyap, R. Wyatt, P. F. Mckee, “Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

1987 (2)

Archambault, J.-L.

J.-L. Archambault, S. G. Grubb, “Fiber grating in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
[Crossref]

Azana, J.

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[Crossref]

Bellemare, A.

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
[Crossref]

J.-F. Lemieux, A. Bellemare, C. Latrasse, M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

Bennion, I.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[Crossref]

Cai, J.-X.

J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
[Crossref]

Carballar, A.

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[Crossref]

Chen, X.

X. Chen, C. Fan, Y. Luo, S. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1501–1503 (2000).
[Crossref]

Chernikov, S. V.

S. V. Chernikov, J. R. Taylor, R. Kashyap, “Integrated all optical fiber source of multigigahertz soliton pulse train,” Electron. Lett. 29, 1788–1789 (1993).
[Crossref]

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[Crossref]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

Dhosi, G.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995).
[Crossref]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

M. K. Durkin, R. Feced, C. Ramirez, M. N. Zervas, “Advanced fiber Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, Vol. 1 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper TuH4–1.

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[Crossref]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995).
[Crossref]

Engan, H. E.

Ennser, K.

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Fan, C.

X. Chen, C. Fan, Y. Luo, S. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1501–1503 (2000).
[Crossref]

Farries, M. C.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, U. Koren, “Single frequency erbium fiber external cavity single-mode semiconductor fiber grating laser,” Appl. Phys. Lett. 66, 3422–3424 (1995).
[Crossref]

Feced, R.

M. Ibsen, R. Feced, P. Petropoulos, M. N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Optical Fiber Communication Conference, Vol. 4 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper PD21–1.

M. K. Durkin, R. Feced, C. Ramirez, M. N. Zervas, “Advanced fiber Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, Vol. 1 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper TuH4–1.

Feinberg, J.

J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
[Crossref]

Feng, K.-M.

J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
[Crossref]

Grubb, S. G.

J.-L. Archambault, S. G. Grubb, “Fiber grating in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
[Crossref]

Grubsky, V.

J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
[Crossref]

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Hu, S.

X. Chen, C. Fan, Y. Luo, S. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1501–1503 (2000).
[Crossref]

Ibsen, M.

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[Crossref]

M. Ibsen, R. Feced, P. Petropoulos, M. N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Optical Fiber Communication Conference, Vol. 4 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper PD21–1.

Inoue, A.

T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, H. Suganuma, “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WDD84.

Karasek, M.

Kashyap, R.

S. V. Chernikov, J. R. Taylor, R. Kashyap, “Integrated all optical fiber source of multigigahertz soliton pulse train,” Electron. Lett. 29, 1788–1789 (1993).
[Crossref]

R. Kashyap, R. Wyatt, P. F. Mckee, “Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

Koren, U.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, U. Koren, “Single frequency erbium fiber external cavity single-mode semiconductor fiber grating laser,” Appl. Phys. Lett. 66, 3422–3424 (1995).
[Crossref]

Krug, P. A.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995).
[Crossref]

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, U. Koren, “Single frequency erbium fiber external cavity single-mode semiconductor fiber grating laser,” Appl. Phys. Lett. 66, 3422–3424 (1995).
[Crossref]

LaRochelle, S.

Latrasse, C.

J.-F. Lemieux, A. Bellemare, C. Latrasse, M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

Lemieux, J.-F.

J.-F. Lemieux, A. Bellemare, C. Latrasse, M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

Loh, W. H.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, U. Koren, “Single frequency erbium fiber external cavity single-mode semiconductor fiber grating laser,” Appl. Phys. Lett. 66, 3422–3424 (1995).
[Crossref]

Luo, Y.

X. Chen, C. Fan, Y. Luo, S. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1501–1503 (2000).
[Crossref]

Marceau, J. F.

G. Vareille, F. Petel, J. F. Marceau, “3.65 Tbit/s (365 × 11.6 Gbit/s) transmission experiment over 6850 km using 22.2 GHz channel spacing in NRZ format,” in 27th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, Amsterdam, 2001), postdeadline paper, vol. 6, pp. 14–15.

Mckee, P. F.

R. Kashyap, R. Wyatt, P. F. Mckee, “Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Murashima, K.

T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, H. Suganuma, “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WDD84.

Muriel, M. A.

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[Crossref]

Ohmura, M.

T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, H. Suganuma, “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WDD84.

Ouellette, F.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995).
[Crossref]

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filter in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
[Crossref] [PubMed]

Petel, F.

G. Vareille, F. Petel, J. F. Marceau, “3.65 Tbit/s (365 × 11.6 Gbit/s) transmission experiment over 6850 km using 22.2 GHz channel spacing in NRZ format,” in 27th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, Amsterdam, 2001), postdeadline paper, vol. 6, pp. 14–15.

Petropoulos, P.

M. Ibsen, R. Feced, P. Petropoulos, M. N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Optical Fiber Communication Conference, Vol. 4 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper PD21–1.

Ramirez, C.

M. K. Durkin, R. Feced, C. Ramirez, M. N. Zervas, “Advanced fiber Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, Vol. 1 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper TuH4–1.

Rochette, M.

Sahlgren, B.

Sakuda, K.

Seeds, A. J.

C. F. C. Silva, A. J. Seeds, P. J. Williams, “Terahertz span 60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photon. Technol. Lett. 13, 370–372 (2001).
[Crossref]

Shibata, T.

T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, H. Suganuma, “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WDD84.

Shiozaki, M.

T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, H. Suganuma, “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WDD84.

Silva, C. F. C.

C. F. C. Silva, A. J. Seeds, P. J. Williams, “Terahertz span 60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photon. Technol. Lett. 13, 370–372 (2001).
[Crossref]

Starodubov, D. S.

J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
[Crossref]

Stephens, T.

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995).
[Crossref]

Storøy, H.

Stubbe, R.

Suganuma, H.

T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, H. Suganuma, “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WDD84.

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[Crossref]

Taylor, J. R.

S. V. Chernikov, J. R. Taylor, R. Kashyap, “Integrated all optical fiber source of multigigahertz soliton pulse train,” Electron. Lett. 29, 1788–1789 (1993).
[Crossref]

Tetu, M.

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
[Crossref]

J.-F. Lemieux, A. Bellemare, C. Latrasse, M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[Crossref]

Vareille, G.

G. Vareille, F. Petel, J. F. Marceau, “3.65 Tbit/s (365 × 11.6 Gbit/s) transmission experiment over 6850 km using 22.2 GHz channel spacing in NRZ format,” in 27th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, Amsterdam, 2001), postdeadline paper, vol. 6, pp. 14–15.

Williams, P. J.

C. F. C. Silva, A. J. Seeds, P. J. Williams, “Terahertz span 60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photon. Technol. Lett. 13, 370–372 (2001).
[Crossref]

Willner, A. E.

J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
[Crossref]

Wyatt, R.

R. Kashyap, R. Wyatt, P. F. Mckee, “Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

Xie, S.

X. Chen, C. Fan, Y. Luo, S. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1501–1503 (2000).
[Crossref]

Yamada, M.

Zervas, M. N.

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, U. Koren, “Single frequency erbium fiber external cavity single-mode semiconductor fiber grating laser,” Appl. Phys. Lett. 66, 3422–3424 (1995).
[Crossref]

M. Ibsen, R. Feced, P. Petropoulos, M. N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Optical Fiber Communication Conference, Vol. 4 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper PD21–1.

M. K. Durkin, R. Feced, C. Ramirez, M. N. Zervas, “Advanced fiber Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, Vol. 1 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper TuH4–1.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, U. Koren, “Single frequency erbium fiber external cavity single-mode semiconductor fiber grating laser,” Appl. Phys. Lett. 66, 3422–3424 (1995).
[Crossref]

Electron. Lett. (4)

S. V. Chernikov, J. R. Taylor, R. Kashyap, “Integrated all optical fiber source of multigigahertz soliton pulse train,” Electron. Lett. 29, 1788–1789 (1993).
[Crossref]

R. Kashyap, R. Wyatt, P. F. Mckee, “Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings,” Electron. Lett. 29, 1025–1026 (1993).
[Crossref]

J.-F. Lemieux, A. Bellemare, C. Latrasse, M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating,” Electron. Lett. 35, 904–906 (1999).
[Crossref]

F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899–901 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Ennser, M. N. Zervas, R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (6)

J.-X. Cai, K.-M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 1455–1457 (1999).
[Crossref]

M. Ibsen, M. K. Durkin, M. J. Cole, R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842–844 (1998).
[Crossref]

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999).
[Crossref]

X. Chen, C. Fan, Y. Luo, S. Xie, S. Hu, “Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1501–1503 (2000).
[Crossref]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[Crossref]

C. F. C. Silva, A. J. Seeds, P. J. Williams, “Terahertz span 60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photon. Technol. Lett. 13, 370–372 (2001).
[Crossref]

J. Lightwave Technol. (4)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

J.-L. Archambault, S. G. Grubb, “Fiber grating in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).
[Crossref]

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Opt. Lett. (2)

Other (4)

M. K. Durkin, R. Feced, C. Ramirez, M. N. Zervas, “Advanced fiber Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, Vol. 1 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper TuH4–1.

T. Shibata, M. Shiozaki, M. Ohmura, K. Murashima, A. Inoue, H. Suganuma, “The dispersion-free filters for DWDM systems using 30 mm long symmetric fiber Bragg gratings,” in Optical Fiber Communication Conference, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper WDD84.

G. Vareille, F. Petel, J. F. Marceau, “3.65 Tbit/s (365 × 11.6 Gbit/s) transmission experiment over 6850 km using 22.2 GHz channel spacing in NRZ format,” in 27th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, Amsterdam, 2001), postdeadline paper, vol. 6, pp. 14–15.

M. Ibsen, R. Feced, P. Petropoulos, M. N. Zervas, “99.9% reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM networks,” in Optical Fiber Communication Conference, Vol. 4 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper PD21–1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Refractive-index changes in the fiber gratings with sinusoidal chirp and Gaussian apodization. (a) p = 0.5, (b) p = 0.75.

Fig. 2
Fig. 2

Reflection (solid) and time delay (dash) of the proposed fiber grating for narrow-band application.

Fig. 3
Fig. 3

Reflection spectrum of the proposed fiber grating (solid) compared with a linearly chirped fiber grating (dash) for broad bandwidth application.

Fig. 4
Fig. 4

Bandwidth and the factor BWU as a function of the chirp coefficient b.

Fig. 5
Fig. 5

Bandwidth and the factor BWU as a function of the reversion coefficient p.

Fig. 6
Fig. 6

Refractive-index changes in the SSCFG I. The apodization profile over the entire structure is not plotted for clarity.

Fig. 7
Fig. 7

Refractive-index changes in the SSCFG II. The apodization profile over the entire structure is not plotted for clarity.

Fig. 8
Fig. 8

Local magnification of the reflection spectrum of the SSCFG I with 141 channels and a channel separation of 25 GHz.

Fig. 9
Fig. 9

Reflection spectrum (solid) and time delay (dash) of the SSCFG II with seven channels and a channel separation of 50 GHz.

Fig. 10
Fig. 10

Reflection (solid) and time delay (□) of the proposed fiber grating introduced 20 separate displacement errors within 0.03 nm, and its nondistorted version is shown in Fig. 2.

Fig. 11
Fig. 11

Reflection (□) and time delay (solid) of the proposed fiber grating introduced Bragg wavelength errors within 0.001 nm, and its nondistorted version is shown in Fig. 2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

nz=n0+δnz1+νcos2πΛ0 z+ϕz,
ΛeffzΛ0-Λ022π b sin2πpzL,
Δτm=1Nn=1N |Δτλn-bλn+c|,
δnz=0.0002 tanh4L/2+z/Lz<00.0002 tanh5L/2-z/Lz0,
Λeffz=Λ0-Λ022π b-3z/L-12+1z>0Λ0-Λ022π b3z/L+12-1z0.

Metrics