Abstract

Theoretical analysis was applied to analyze the refractive-index distribution (RID) and bandwidth (BW) of gradient-index polymer optical fibers (GI POFs) prepared by a centrifugal field process. The RID of the prepared GI POF could be represented by the equation of n(r) = n 1[1 - 2δ(r/ a)g]1/2. The studied material systems were poly(hexafluoroisopropyl 2-fluoroacrylate) (PHFIP 2-FA)/dibutyl phthalate (DBP) and poly(methyl methacrylate) (PMMA)/benzyl benzoate (BEN). The RID and the BW were significantly affected by an essential parameter k, which was related to the material properties (density difference and molecular weight) and processing properties (rotating speed, temperature, and radius). As k increased, the characteristic constant of RID, g, decreased to a minimum and then increased sharply, owing to the separation of the polymer and the dopant. On the other hand, the relative refractive-index difference of RID, δ, increased to a steady value after k increased to a certain value. The variation of RID with k resulted in a local minimum of intermodal dispersion, and thus a maximum bandwidth was obtained. The maximum BW of the PHFIP 2-FA/DBP and PMMA/BEN systems at 1550 nm (100-m fiber length and 2-nm spectral width) for the case of k ≠ 0 were 6.7 and 3.2 Gb/s, respectively. The wavelength of light source affects the BW significantly only at k around zero because of the importance of the intramodal dispersion in this case.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike, T. Ishigure, “High bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
    [CrossRef]
  2. T. Ishigure, E. Nihei, Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data link,” Appl. Opt. 35, 2048–2053 (1996).
    [CrossRef] [PubMed]
  3. T. Ishigure, E. Nihei, Y. Koike, “Optimization of the refractive-index distribution of high-bandwidth GI polymer optical fiber based on both modal and material dispersions,” Polym. J. 28, 272–275 (1996).
    [CrossRef]
  4. E. Nihei, T. Ishigure, Y. Koike, “High-bandwidth graded-index polymer optical fiber for near-infrared use,” Appl. Opt. 35, 7085–7090 (1996).
    [CrossRef] [PubMed]
  5. T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
    [CrossRef]
  6. M. Sato, T. Ishigure, Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 18, 952–958 (2000).
    [CrossRef]
  7. T. Ishugure, Y. Koike, J. W. Fleming, “Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties,” J. Lightwave Technol. 18, 178–184 (2000).
    [CrossRef]
  8. R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3627 (1997).
    [CrossRef]
  9. A. F. Garito, J. Wang, R. Cao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
    [CrossRef] [PubMed]
  10. T. Ishigure, M. Kano, Y. Koike, “Which is a more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling,” J. Lightwave Technol. 18, 959–965 (2000).
    [CrossRef]
  11. G. Yabre, “Theoretical investigation on the dispersion of graded-index polymer optical fibers,” J. Lightwave Technol. 18, 869–877 (2000).
    [CrossRef]
  12. S. Y. Yang, Y. H. Chang, B. C. Ho, W. C. Chen, T. W. Tseng, “A novel method for preparing gradient index (GI) plastic rods. Initiator diffusion technique,” Polym. Bull. 34, 87–91 (1995).
    [CrossRef]
  13. B. C. Ho, J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, T. W. Tseng, “Gradient-index polymer fibers prepared by extrusion,” Polymer J. 27, 310–313 (1995).
    [CrossRef]
  14. W. C. Chen, Y. Chang, J-P. Hsu, “Theoretical analysis on a multilayer coextrusion process for preparing gradient-index polymer optical fibers,” J. Phys. Chem. B 103, 7584–7590 (1999).
    [CrossRef]
  15. W. C. Chen, Y. Chang, M. S. Wei, “Theoretical analysis on the preparation of graded-index polymeric rods by a centrifugal field,” J. Polym. Sci. Polym. Phys. 38, 1764–1772 (2000).
    [CrossRef]
  16. F. G. H. Duijhoven, C. W. M. Bastiaansen, “Gradient refractive index polymers produced in a centrifugal field,” Adv. Mater. 11, 567–570 (1999).
    [CrossRef]
  17. D. W. Van Krevelen, Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), Chap. 10.
  18. R. Olshansky, D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt. 15, 483–491 (1976).
    [CrossRef] [PubMed]
  19. D. W. Van Krevelen, Properties of Polymers, 1st ed. (Elsevier, Amsterdam, 1976), Chap. 4.

2000 (5)

1999 (2)

W. C. Chen, Y. Chang, J-P. Hsu, “Theoretical analysis on a multilayer coextrusion process for preparing gradient-index polymer optical fibers,” J. Phys. Chem. B 103, 7584–7590 (1999).
[CrossRef]

F. G. H. Duijhoven, C. W. M. Bastiaansen, “Gradient refractive index polymers produced in a centrifugal field,” Adv. Mater. 11, 567–570 (1999).
[CrossRef]

1998 (2)

A. F. Garito, J. Wang, R. Cao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

1997 (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3627 (1997).
[CrossRef]

1996 (3)

1995 (3)

Y. Koike, T. Ishigure, “High bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

S. Y. Yang, Y. H. Chang, B. C. Ho, W. C. Chen, T. W. Tseng, “A novel method for preparing gradient index (GI) plastic rods. Initiator diffusion technique,” Polym. Bull. 34, 87–91 (1995).
[CrossRef]

B. C. Ho, J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, T. W. Tseng, “Gradient-index polymer fibers prepared by extrusion,” Polymer J. 27, 310–313 (1995).
[CrossRef]

1976 (1)

Bastiaansen, C. W. M.

F. G. H. Duijhoven, C. W. M. Bastiaansen, “Gradient refractive index polymers produced in a centrifugal field,” Adv. Mater. 11, 567–570 (1999).
[CrossRef]

Cao, R.

A. F. Garito, J. Wang, R. Cao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

Chang, Y.

W. C. Chen, Y. Chang, M. S. Wei, “Theoretical analysis on the preparation of graded-index polymeric rods by a centrifugal field,” J. Polym. Sci. Polym. Phys. 38, 1764–1772 (2000).
[CrossRef]

W. C. Chen, Y. Chang, J-P. Hsu, “Theoretical analysis on a multilayer coextrusion process for preparing gradient-index polymer optical fibers,” J. Phys. Chem. B 103, 7584–7590 (1999).
[CrossRef]

Chang, Y. H.

S. Y. Yang, Y. H. Chang, B. C. Ho, W. C. Chen, T. W. Tseng, “A novel method for preparing gradient index (GI) plastic rods. Initiator diffusion technique,” Polym. Bull. 34, 87–91 (1995).
[CrossRef]

Chen, J. H.

B. C. Ho, J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, T. W. Tseng, “Gradient-index polymer fibers prepared by extrusion,” Polymer J. 27, 310–313 (1995).
[CrossRef]

Chen, J. J.

B. C. Ho, J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, T. W. Tseng, “Gradient-index polymer fibers prepared by extrusion,” Polymer J. 27, 310–313 (1995).
[CrossRef]

Chen, W. C.

W. C. Chen, Y. Chang, M. S. Wei, “Theoretical analysis on the preparation of graded-index polymeric rods by a centrifugal field,” J. Polym. Sci. Polym. Phys. 38, 1764–1772 (2000).
[CrossRef]

W. C. Chen, Y. Chang, J-P. Hsu, “Theoretical analysis on a multilayer coextrusion process for preparing gradient-index polymer optical fibers,” J. Phys. Chem. B 103, 7584–7590 (1999).
[CrossRef]

B. C. Ho, J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, T. W. Tseng, “Gradient-index polymer fibers prepared by extrusion,” Polymer J. 27, 310–313 (1995).
[CrossRef]

S. Y. Yang, Y. H. Chang, B. C. Ho, W. C. Chen, T. W. Tseng, “A novel method for preparing gradient index (GI) plastic rods. Initiator diffusion technique,” Polym. Bull. 34, 87–91 (1995).
[CrossRef]

Duijhoven, F. G. H.

F. G. H. Duijhoven, C. W. M. Bastiaansen, “Gradient refractive index polymers produced in a centrifugal field,” Adv. Mater. 11, 567–570 (1999).
[CrossRef]

Fleming, J. W.

Garito, A. F.

A. F. Garito, J. Wang, R. Cao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3627 (1997).
[CrossRef]

Ho, B. C.

S. Y. Yang, Y. H. Chang, B. C. Ho, W. C. Chen, T. W. Tseng, “A novel method for preparing gradient index (GI) plastic rods. Initiator diffusion technique,” Polym. Bull. 34, 87–91 (1995).
[CrossRef]

B. C. Ho, J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, T. W. Tseng, “Gradient-index polymer fibers prepared by extrusion,” Polymer J. 27, 310–313 (1995).
[CrossRef]

Hsu, J-P.

W. C. Chen, Y. Chang, J-P. Hsu, “Theoretical analysis on a multilayer coextrusion process for preparing gradient-index polymer optical fibers,” J. Phys. Chem. B 103, 7584–7590 (1999).
[CrossRef]

Ishigure, T.

T. Ishigure, M. Kano, Y. Koike, “Which is a more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling,” J. Lightwave Technol. 18, 959–965 (2000).
[CrossRef]

M. Sato, T. Ishigure, Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 18, 952–958 (2000).
[CrossRef]

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Optimization of the refractive-index distribution of high-bandwidth GI polymer optical fiber based on both modal and material dispersions,” Polym. J. 28, 272–275 (1996).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data link,” Appl. Opt. 35, 2048–2053 (1996).
[CrossRef] [PubMed]

E. Nihei, T. Ishigure, Y. Koike, “High-bandwidth graded-index polymer optical fiber for near-infrared use,” Appl. Opt. 35, 7085–7090 (1996).
[CrossRef] [PubMed]

Y. Koike, T. Ishigure, “High bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

Ishugure, T.

Jiang, G.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3627 (1997).
[CrossRef]

Kano, M.

Keck, D. B.

Koeppen, C.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3627 (1997).
[CrossRef]

Koike, Y.

Nihei, E.

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Optimization of the refractive-index distribution of high-bandwidth GI polymer optical fiber based on both modal and material dispersions,” Polym. J. 28, 272–275 (1996).
[CrossRef]

E. Nihei, T. Ishigure, Y. Koike, “High-bandwidth graded-index polymer optical fiber for near-infrared use,” Appl. Opt. 35, 7085–7090 (1996).
[CrossRef] [PubMed]

T. Ishigure, E. Nihei, Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data link,” Appl. Opt. 35, 2048–2053 (1996).
[CrossRef] [PubMed]

Olshansky, R.

Sato, M.

M. Sato, T. Ishigure, Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 18, 952–958 (2000).
[CrossRef]

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

Shi, R. F.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3627 (1997).
[CrossRef]

Tseng, T. W.

S. Y. Yang, Y. H. Chang, B. C. Ho, W. C. Chen, T. W. Tseng, “A novel method for preparing gradient index (GI) plastic rods. Initiator diffusion technique,” Polym. Bull. 34, 87–91 (1995).
[CrossRef]

B. C. Ho, J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, T. W. Tseng, “Gradient-index polymer fibers prepared by extrusion,” Polymer J. 27, 310–313 (1995).
[CrossRef]

Van Krevelen, D. W.

D. W. Van Krevelen, Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), Chap. 10.

D. W. Van Krevelen, Properties of Polymers, 1st ed. (Elsevier, Amsterdam, 1976), Chap. 4.

Wang, J.

A. F. Garito, J. Wang, R. Cao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3627 (1997).
[CrossRef]

Wei, M. S.

W. C. Chen, Y. Chang, M. S. Wei, “Theoretical analysis on the preparation of graded-index polymeric rods by a centrifugal field,” J. Polym. Sci. Polym. Phys. 38, 1764–1772 (2000).
[CrossRef]

Yabre, G.

Yang, S. Y.

S. Y. Yang, Y. H. Chang, B. C. Ho, W. C. Chen, T. W. Tseng, “A novel method for preparing gradient index (GI) plastic rods. Initiator diffusion technique,” Polym. Bull. 34, 87–91 (1995).
[CrossRef]

B. C. Ho, J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, T. W. Tseng, “Gradient-index polymer fibers prepared by extrusion,” Polymer J. 27, 310–313 (1995).
[CrossRef]

Adv. Mater. (1)

F. G. H. Duijhoven, C. W. M. Bastiaansen, “Gradient refractive index polymers produced in a centrifugal field,” Adv. Mater. 11, 567–570 (1999).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71, 3625–3627 (1997).
[CrossRef]

J. Lightwave Technol. (5)

J. Phys. Chem. B (1)

W. C. Chen, Y. Chang, J-P. Hsu, “Theoretical analysis on a multilayer coextrusion process for preparing gradient-index polymer optical fibers,” J. Phys. Chem. B 103, 7584–7590 (1999).
[CrossRef]

J. Polym. Sci. Polym. Phys. (1)

W. C. Chen, Y. Chang, M. S. Wei, “Theoretical analysis on the preparation of graded-index polymeric rods by a centrifugal field,” J. Polym. Sci. Polym. Phys. 38, 1764–1772 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

Polym. Bull. (1)

S. Y. Yang, Y. H. Chang, B. C. Ho, W. C. Chen, T. W. Tseng, “A novel method for preparing gradient index (GI) plastic rods. Initiator diffusion technique,” Polym. Bull. 34, 87–91 (1995).
[CrossRef]

Polym. J. (1)

T. Ishigure, E. Nihei, Y. Koike, “Optimization of the refractive-index distribution of high-bandwidth GI polymer optical fiber based on both modal and material dispersions,” Polym. J. 28, 272–275 (1996).
[CrossRef]

Polymer J. (1)

B. C. Ho, J. H. Chen, W. C. Chen, S. Y. Yang, J. J. Chen, T. W. Tseng, “Gradient-index polymer fibers prepared by extrusion,” Polymer J. 27, 310–313 (1995).
[CrossRef]

Science (1)

A. F. Garito, J. Wang, R. Cao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998).
[CrossRef] [PubMed]

Other (2)

D. W. Van Krevelen, Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), Chap. 10.

D. W. Van Krevelen, Properties of Polymers, 1st ed. (Elsevier, Amsterdam, 1976), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the centrifugal process for preparing GI POFs on the basis of the polymer-dopant materials system.

Fig. 2
Fig. 2

Effect of k on the RID of the PHFIP 2-FA/DBP system.

Fig. 3
Fig. 3

Effects of k on the g and δ of the RID for the studied material systems at the wavelength of 1550 nm.

Fig. 4
Fig. 4

Effects of k on the intermodal and the intramodal dispersions of the studied material systems at the wavelength of 1550 nm.

Fig. 5
Fig. 5

Effects of k on the bandwidth and the intermodal dispersion of the studied material systems at the wavelength of 1550 nm (fiber length = 100 m, spectral width = 2 nm).

Fig. 6
Fig. 6

Variation of the g and BW with k for the studied material systems (fiber length = 100 m, spectral width = 2 nm).

Fig. 7
Fig. 7

Effect of wavelength on the bandwidths of the studied PHFIP 2-FA/DBP system (fiber length = 100 m, spectral width = 2 nm).

Tables (3)

Tables Icon

Table 1 Physical Properties of the Studied Materialsa

Tables Icon

Table 2 Sellmeier Coefficients of the Studied Materialsa

Tables Icon

Table 3 Processing Parameters for the Theoretical Analysis

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

nr=n11-2δrag1/2, 0ra,
δ=n1-n2n1,
xAr*=kxA1-xAr*,
k=ω2RgTρA-ρBMAρA a2,
xA=11+C exp-12 kr*2,
C=-exp12 k1-xA0-1exp-12 kxA0-1,
nd=1+2φ1-φ
φ=Mnd,M2-1nd,M2+2xMρMMxMρM,
τz=N1c1-δ4+εg+2 z2g/g+21-2δz2g/g+2-1/2,
N1=n1-λ dn1dλ,
ε=-2n1N1λδdδλ,
n2-1=iAiλ2λ2-λi2,
σintermodal=ln1δ2cgg+1g+23g+21/2×C12+4C1C2δg+12g+1+4δ2C222g+225g+23g+21/2,
σintramodal=σxLλc-λ2d2n1dλ22-2λ2d2n1dλN1δC12g2g+2+N1δ2C122g2g+23g+21/2,
C1=g-2-εg+2,
C2=3g-2-2ε2g+2.
σtotal=σintermodal2+σintramodal21/2,
BW=0.1874σtotal.
gopt=2+ε-δ 4+ε3+ε5+2ε.

Metrics