Abstract

We explore ways in which high-spectral-resolution measurements can aid in the retrieval of atmospheric temperature and gas-concentration profiles from outgoing infrared spectra when optically thin cirrus clouds are present. Simulated outgoing spectra that contain cirrus are fitted with spectra that do not contain cirrus, and the residuals are examined. For those lines with weighting functions that peak near the same altitude as the thin cirrus, unique features are observed in the residuals. These unique features are highly sensitive to the resolution of the instrumental line shape. For thin cirrus these residual features are narrow (≤0.1 cm-1), so high spectral resolution is required for unambiguous observation. The magnitudes of these unique features are larger than the noise of modern instruments. The sensitivities of these features to cloud height and cloud optical depth are also discussed. Our sensitivity studies show that, when the errors in the estimation of temperature profiles are not large, the dominant contribution to the residuals is the misinterpretation of cirrus. An analysis that focuses on information content is also presented. An understanding of the magnitude of the effect and of its dependence on spectral resolution as well as on spectral region is important for retrieving spacecraft data and for the design of future infrared instruments for forecasting weather and monitoring greenhouse gases.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. Mcmillin, “TIROS-N operational vertical sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).
  2. World Meteorological Organization, The World Weather Watch Programme 1988–1997 (World Meteorological Organization, Geneva, 1987).
  3. H. Aumann, R. Pagano, “Atmospheric Infrared Sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
    [CrossRef]
  4. R. Beer, T. Glavich, D. Rider, “Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite,” Appl. Opt. 40, 2356–2367 (2001).
    [CrossRef]
  5. D. Diebel, M. Langevin, D. Klaes, P. Courtier, T. Phulpin, F. Cayla, G. Chalon, “The advanced atmospheric temperature sounder IASI—a new development for the polar satellite Metop,” presented at the 1997 Meteorological Satellite Data Users’ Conference, Brussels, Belgium, 29 September–3 October 1997 (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany).
  6. S. A. Ackerman, W. L. Smith, J. D. Spinhirne, H. E. Revercomb, “The 27–28 October 1986 FIRE IFO cirrus case study: spectral properties of cirrus clouds in the 8–12-μm window,” Mon. Weather Rev. 118, 2377–2388 (1990).
    [CrossRef]
  7. Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
    [CrossRef]
  8. K. D. Hutchison, K. R. Hardy, B. C. Gao, “Improved detection of optically thin cirrus clouds in nighttime multispectral meteorological satellite imagery using total integrated water-vapor information,” J. Appl. Meteorol. 34, 1161–1168 (1995).
    [CrossRef]
  9. K. D. Hutchison, N. J. Choe, “Application of 1.38 μm imagery for thin cirrus detection in daytime imagery collected over land surfaces,” Int. J. Remote Sens. 17, 3325–3342 (1996).
    [CrossRef]
  10. K. D. Hutchison, “Application of AVHRR/3 imagery for the improved detection of thin cirrus clouds and specification of cloud-top phase,” J. Atmos. Ocean. Tech. 16, 1885–1899 (1999).
    [CrossRef]
  11. D. D. Turner, S. A. Ackerman, “Cloud phase and microphysical property retrieval using the atmospheric emitted radiance interferometer (AERI)” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 2002), p. 60.
  12. S. A. Ackerman, H. E. Revercomb, R. O. Knuteson, P. Antonelli, “Analysis of the high-spectral resolution infrared sounder (HIS) radiances collected as part of the FIRE program,” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Dallas, Texas, 2002), p. 245.
  13. R. J. Bantges, J. E. Russell, J. D. Haigh, “Cirrus cloud top-of-atmosphere radiance spectra in the thermal infrared,” J. Quant. Spectrosc. Radiat. Transfer 63, 487–498 (1999).
    [CrossRef]
  14. P. Schlussel, M. Goldberg, “Retrieval of atmospheric temperature and water vapour from IASI measurements in partly cloudy situations,” Adv. Space Res. 29, 1703–1706 (2002).
    [CrossRef]
  15. W. B. Rossow, R. A. Schiffer, “Advances in understanding clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999).
    [CrossRef]
  16. R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford U. Press, New York, 1989).
  17. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef] [PubMed]
  18. DISORT version 1.3 was released in March2000 and can be obtained from ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple_Scatt/ .
  19. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  20. J. Wang, G. P. Anderson, “Validation of FASCOD3 and MODTRAN3: comparison of model calculations with interferometer observations from SPECTRE and ITRA,” Appl. Opt. 35, 6028–6040 (1996).
    [CrossRef] [PubMed]
  21. S. G. Warren, “Optical-constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
    [CrossRef]
  22. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  23. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR_86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  24. A. J. Baran, S. Havemann, D. Mackowski, “A database of hexagonal column optical properties for wavelengths ranging between 0.2 mm to 30 mm produced for ANNEX 7,” contract 4b/3/02 (Department of the Environment, Food, and Rural Affairs, London, UK (2002).
  25. J. M. Russell, S. R. Drayson, “The inference of atmospheric ozone using satellite horizon measurements in the 1042 cm-1 band,” J. Atmos. Sci. 29, 376–390 (1972).
    [CrossRef]
  26. A. Eldering, Jet Propulsion Laboratory, Mail Stop 183-601, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 2002).
  27. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, Singapore, 2000), Chap. 2, pp. 37–41.
  28. Ref. 27, p. 37, formula (2.80).

2002 (1)

P. Schlussel, M. Goldberg, “Retrieval of atmospheric temperature and water vapour from IASI measurements in partly cloudy situations,” Adv. Space Res. 29, 1703–1706 (2002).
[CrossRef]

2001 (1)

1999 (3)

K. D. Hutchison, “Application of AVHRR/3 imagery for the improved detection of thin cirrus clouds and specification of cloud-top phase,” J. Atmos. Ocean. Tech. 16, 1885–1899 (1999).
[CrossRef]

R. J. Bantges, J. E. Russell, J. D. Haigh, “Cirrus cloud top-of-atmosphere radiance spectra in the thermal infrared,” J. Quant. Spectrosc. Radiat. Transfer 63, 487–498 (1999).
[CrossRef]

W. B. Rossow, R. A. Schiffer, “Advances in understanding clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999).
[CrossRef]

1998 (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1996 (2)

J. Wang, G. P. Anderson, “Validation of FASCOD3 and MODTRAN3: comparison of model calculations with interferometer observations from SPECTRE and ITRA,” Appl. Opt. 35, 6028–6040 (1996).
[CrossRef] [PubMed]

K. D. Hutchison, N. J. Choe, “Application of 1.38 μm imagery for thin cirrus detection in daytime imagery collected over land surfaces,” Int. J. Remote Sens. 17, 3325–3342 (1996).
[CrossRef]

1995 (1)

K. D. Hutchison, K. R. Hardy, B. C. Gao, “Improved detection of optically thin cirrus clouds in nighttime multispectral meteorological satellite imagery using total integrated water-vapor information,” J. Appl. Meteorol. 34, 1161–1168 (1995).
[CrossRef]

1994 (1)

H. Aumann, R. Pagano, “Atmospheric Infrared Sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
[CrossRef]

1992 (1)

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
[CrossRef]

1990 (1)

S. A. Ackerman, W. L. Smith, J. D. Spinhirne, H. E. Revercomb, “The 27–28 October 1986 FIRE IFO cirrus case study: spectral properties of cirrus clouds in the 8–12-μm window,” Mon. Weather Rev. 118, 2377–2388 (1990).
[CrossRef]

1988 (1)

1984 (1)

1979 (1)

W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. Mcmillin, “TIROS-N operational vertical sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).

1974 (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

1972 (1)

J. M. Russell, S. R. Drayson, “The inference of atmospheric ozone using satellite horizon measurements in the 1042 cm-1 band,” J. Atmos. Sci. 29, 376–390 (1972).
[CrossRef]

Ackerman, S. A.

S. A. Ackerman, W. L. Smith, J. D. Spinhirne, H. E. Revercomb, “The 27–28 October 1986 FIRE IFO cirrus case study: spectral properties of cirrus clouds in the 8–12-μm window,” Mon. Weather Rev. 118, 2377–2388 (1990).
[CrossRef]

D. D. Turner, S. A. Ackerman, “Cloud phase and microphysical property retrieval using the atmospheric emitted radiance interferometer (AERI)” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 2002), p. 60.

S. A. Ackerman, H. E. Revercomb, R. O. Knuteson, P. Antonelli, “Analysis of the high-spectral resolution infrared sounder (HIS) radiances collected as part of the FIRE program,” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Dallas, Texas, 2002), p. 245.

Anderson, G. P.

J. Wang, G. P. Anderson, “Validation of FASCOD3 and MODTRAN3: comparison of model calculations with interferometer observations from SPECTRE and ITRA,” Appl. Opt. 35, 6028–6040 (1996).
[CrossRef] [PubMed]

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR_86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Antonelli, P.

S. A. Ackerman, H. E. Revercomb, R. O. Knuteson, P. Antonelli, “Analysis of the high-spectral resolution infrared sounder (HIS) radiances collected as part of the FIRE program,” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Dallas, Texas, 2002), p. 245.

Aumann, H.

H. Aumann, R. Pagano, “Atmospheric Infrared Sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
[CrossRef]

Bantges, R. J.

R. J. Bantges, J. E. Russell, J. D. Haigh, “Cirrus cloud top-of-atmosphere radiance spectra in the thermal infrared,” J. Quant. Spectrosc. Radiat. Transfer 63, 487–498 (1999).
[CrossRef]

Baran, A. J.

A. J. Baran, S. Havemann, D. Mackowski, “A database of hexagonal column optical properties for wavelengths ranging between 0.2 mm to 30 mm produced for ANNEX 7,” contract 4b/3/02 (Department of the Environment, Food, and Rural Affairs, London, UK (2002).

Beer, R.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Cayla, F.

D. Diebel, M. Langevin, D. Klaes, P. Courtier, T. Phulpin, F. Cayla, G. Chalon, “The advanced atmospheric temperature sounder IASI—a new development for the polar satellite Metop,” presented at the 1997 Meteorological Satellite Data Users’ Conference, Brussels, Belgium, 29 September–3 October 1997 (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany).

Chalon, G.

D. Diebel, M. Langevin, D. Klaes, P. Courtier, T. Phulpin, F. Cayla, G. Chalon, “The advanced atmospheric temperature sounder IASI—a new development for the polar satellite Metop,” presented at the 1997 Meteorological Satellite Data Users’ Conference, Brussels, Belgium, 29 September–3 October 1997 (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany).

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chetwynd, J. H.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR_86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Choe, N. J.

K. D. Hutchison, N. J. Choe, “Application of 1.38 μm imagery for thin cirrus detection in daytime imagery collected over land surfaces,” Int. J. Remote Sens. 17, 3325–3342 (1996).
[CrossRef]

Clough, S. A.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR_86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Courtier, P.

D. Diebel, M. Langevin, D. Klaes, P. Courtier, T. Phulpin, F. Cayla, G. Chalon, “The advanced atmospheric temperature sounder IASI—a new development for the polar satellite Metop,” presented at the 1997 Meteorological Satellite Data Users’ Conference, Brussels, Belgium, 29 September–3 October 1997 (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany).

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Diebel, D.

D. Diebel, M. Langevin, D. Klaes, P. Courtier, T. Phulpin, F. Cayla, G. Chalon, “The advanced atmospheric temperature sounder IASI—a new development for the polar satellite Metop,” presented at the 1997 Meteorological Satellite Data Users’ Conference, Brussels, Belgium, 29 September–3 October 1997 (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany).

Drayson, S. R.

J. M. Russell, S. R. Drayson, “The inference of atmospheric ozone using satellite horizon measurements in the 1042 cm-1 band,” J. Atmos. Sci. 29, 376–390 (1972).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Eldering, A.

A. Eldering, Jet Propulsion Laboratory, Mail Stop 183-601, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 2002).

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gao, B. C.

K. D. Hutchison, K. R. Hardy, B. C. Gao, “Improved detection of optically thin cirrus clouds in nighttime multispectral meteorological satellite imagery using total integrated water-vapor information,” J. Appl. Meteorol. 34, 1161–1168 (1995).
[CrossRef]

Glavich, T.

Goldberg, M.

P. Schlussel, M. Goldberg, “Retrieval of atmospheric temperature and water vapour from IASI measurements in partly cloudy situations,” Adv. Space Res. 29, 1703–1706 (2002).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Goody, R. M.

R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford U. Press, New York, 1989).

Haigh, J. D.

R. J. Bantges, J. E. Russell, J. D. Haigh, “Cirrus cloud top-of-atmosphere radiance spectra in the thermal infrared,” J. Quant. Spectrosc. Radiat. Transfer 63, 487–498 (1999).
[CrossRef]

Hansen, J. E.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Hardy, K. R.

K. D. Hutchison, K. R. Hardy, B. C. Gao, “Improved detection of optically thin cirrus clouds in nighttime multispectral meteorological satellite imagery using total integrated water-vapor information,” J. Appl. Meteorol. 34, 1161–1168 (1995).
[CrossRef]

Havemann, S.

A. J. Baran, S. Havemann, D. Mackowski, “A database of hexagonal column optical properties for wavelengths ranging between 0.2 mm to 30 mm produced for ANNEX 7,” contract 4b/3/02 (Department of the Environment, Food, and Rural Affairs, London, UK (2002).

Hayden, C. M.

W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. Mcmillin, “TIROS-N operational vertical sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).

Hutchison, K. D.

K. D. Hutchison, “Application of AVHRR/3 imagery for the improved detection of thin cirrus clouds and specification of cloud-top phase,” J. Atmos. Ocean. Tech. 16, 1885–1899 (1999).
[CrossRef]

K. D. Hutchison, N. J. Choe, “Application of 1.38 μm imagery for thin cirrus detection in daytime imagery collected over land surfaces,” Int. J. Remote Sens. 17, 3325–3342 (1996).
[CrossRef]

K. D. Hutchison, K. R. Hardy, B. C. Gao, “Improved detection of optically thin cirrus clouds in nighttime multispectral meteorological satellite imagery using total integrated water-vapor information,” J. Appl. Meteorol. 34, 1161–1168 (1995).
[CrossRef]

Jayaweera, K.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Klaes, D.

D. Diebel, M. Langevin, D. Klaes, P. Courtier, T. Phulpin, F. Cayla, G. Chalon, “The advanced atmospheric temperature sounder IASI—a new development for the polar satellite Metop,” presented at the 1997 Meteorological Satellite Data Users’ Conference, Brussels, Belgium, 29 September–3 October 1997 (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany).

Kneizys, F. X.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR_86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Knuteson, R. O.

S. A. Ackerman, H. E. Revercomb, R. O. Knuteson, P. Antonelli, “Analysis of the high-spectral resolution infrared sounder (HIS) radiances collected as part of the FIRE program,” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Dallas, Texas, 2002), p. 245.

Langevin, M.

D. Diebel, M. Langevin, D. Klaes, P. Courtier, T. Phulpin, F. Cayla, G. Chalon, “The advanced atmospheric temperature sounder IASI—a new development for the polar satellite Metop,” presented at the 1997 Meteorological Satellite Data Users’ Conference, Brussels, Belgium, 29 September–3 October 1997 (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany).

Liou, K. N.

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
[CrossRef]

Mackowski, D.

A. J. Baran, S. Havemann, D. Mackowski, “A database of hexagonal column optical properties for wavelengths ranging between 0.2 mm to 30 mm produced for ANNEX 7,” contract 4b/3/02 (Department of the Environment, Food, and Rural Affairs, London, UK (2002).

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mcmillin, L. M.

W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. Mcmillin, “TIROS-N operational vertical sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).

Minnis, P.

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Pagano, R.

H. Aumann, R. Pagano, “Atmospheric Infrared Sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Phulpin, T.

D. Diebel, M. Langevin, D. Klaes, P. Courtier, T. Phulpin, F. Cayla, G. Chalon, “The advanced atmospheric temperature sounder IASI—a new development for the polar satellite Metop,” presented at the 1997 Meteorological Satellite Data Users’ Conference, Brussels, Belgium, 29 September–3 October 1997 (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany).

Revercomb, H. E.

S. A. Ackerman, W. L. Smith, J. D. Spinhirne, H. E. Revercomb, “The 27–28 October 1986 FIRE IFO cirrus case study: spectral properties of cirrus clouds in the 8–12-μm window,” Mon. Weather Rev. 118, 2377–2388 (1990).
[CrossRef]

S. A. Ackerman, H. E. Revercomb, R. O. Knuteson, P. Antonelli, “Analysis of the high-spectral resolution infrared sounder (HIS) radiances collected as part of the FIRE program,” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Dallas, Texas, 2002), p. 245.

Rider, D.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rodgers, C. D.

C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, Singapore, 2000), Chap. 2, pp. 37–41.

Rossow, W. B.

W. B. Rossow, R. A. Schiffer, “Advances in understanding clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Russell, J. E.

R. J. Bantges, J. E. Russell, J. D. Haigh, “Cirrus cloud top-of-atmosphere radiance spectra in the thermal infrared,” J. Quant. Spectrosc. Radiat. Transfer 63, 487–498 (1999).
[CrossRef]

Russell, J. M.

J. M. Russell, S. R. Drayson, “The inference of atmospheric ozone using satellite horizon measurements in the 1042 cm-1 band,” J. Atmos. Sci. 29, 376–390 (1972).
[CrossRef]

Schiffer, R. A.

W. B. Rossow, R. A. Schiffer, “Advances in understanding clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999).
[CrossRef]

Schlussel, P.

P. Schlussel, M. Goldberg, “Retrieval of atmospheric temperature and water vapour from IASI measurements in partly cloudy situations,” Adv. Space Res. 29, 1703–1706 (2002).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Shettle, E. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR_86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Smith, W. L.

S. A. Ackerman, W. L. Smith, J. D. Spinhirne, H. E. Revercomb, “The 27–28 October 1986 FIRE IFO cirrus case study: spectral properties of cirrus clouds in the 8–12-μm window,” Mon. Weather Rev. 118, 2377–2388 (1990).
[CrossRef]

W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. Mcmillin, “TIROS-N operational vertical sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).

Spinhirne, J. D.

S. A. Ackerman, W. L. Smith, J. D. Spinhirne, H. E. Revercomb, “The 27–28 October 1986 FIRE IFO cirrus case study: spectral properties of cirrus clouds in the 8–12-μm window,” Mon. Weather Rev. 118, 2377–2388 (1990).
[CrossRef]

Stamnes, K.

Takano, Y.

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
[CrossRef]

Travis, L. D.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Tsay, S.-C.

Turner, D. D.

D. D. Turner, S. A. Ackerman, “Cloud phase and microphysical property retrieval using the atmospheric emitted radiance interferometer (AERI)” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 2002), p. 60.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wang, J.

Wark, D. Q.

W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. Mcmillin, “TIROS-N operational vertical sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).

Warren, S. G.

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wiscombe, W.

Woolf, H. M.

W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. Mcmillin, “TIROS-N operational vertical sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Yung, Y. L.

R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford U. Press, New York, 1989).

Adv. Space Res. (1)

P. Schlussel, M. Goldberg, “Retrieval of atmospheric temperature and water vapour from IASI measurements in partly cloudy situations,” Adv. Space Res. 29, 1703–1706 (2002).
[CrossRef]

Appl. Opt. (4)

Bull. Am. Meteorol. Soc. (2)

W. B. Rossow, R. A. Schiffer, “Advances in understanding clouds from ISCCP,” Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999).
[CrossRef]

W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, L. M. Mcmillin, “TIROS-N operational vertical sounder,” Bull. Am. Meteorol. Soc. 60, 1177–1187 (1979).

Int. J. Remote Sens. (1)

K. D. Hutchison, N. J. Choe, “Application of 1.38 μm imagery for thin cirrus detection in daytime imagery collected over land surfaces,” Int. J. Remote Sens. 17, 3325–3342 (1996).
[CrossRef]

J. Appl. Meteorol. (1)

K. D. Hutchison, K. R. Hardy, B. C. Gao, “Improved detection of optically thin cirrus clouds in nighttime multispectral meteorological satellite imagery using total integrated water-vapor information,” J. Appl. Meteorol. 34, 1161–1168 (1995).
[CrossRef]

J. Atmos. Ocean. Tech. (1)

K. D. Hutchison, “Application of AVHRR/3 imagery for the improved detection of thin cirrus clouds and specification of cloud-top phase,” J. Atmos. Ocean. Tech. 16, 1885–1899 (1999).
[CrossRef]

J. Atmos. Sci. (2)

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).
[CrossRef]

J. M. Russell, S. R. Drayson, “The inference of atmospheric ozone using satellite horizon measurements in the 1042 cm-1 band,” J. Atmos. Sci. 29, 376–390 (1972).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

R. J. Bantges, J. E. Russell, J. D. Haigh, “Cirrus cloud top-of-atmosphere radiance spectra in the thermal infrared,” J. Quant. Spectrosc. Radiat. Transfer 63, 487–498 (1999).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mon. Weather Rev. (1)

S. A. Ackerman, W. L. Smith, J. D. Spinhirne, H. E. Revercomb, “The 27–28 October 1986 FIRE IFO cirrus case study: spectral properties of cirrus clouds in the 8–12-μm window,” Mon. Weather Rev. 118, 2377–2388 (1990).
[CrossRef]

Opt. Eng. (1)

H. Aumann, R. Pagano, “Atmospheric Infrared Sounder on the Earth Observing System,” Opt. Eng. 33, 776–784 (1994).
[CrossRef]

Space Sci. Rev. (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other (11)

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” Rep. AFGL-TR_86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

A. J. Baran, S. Havemann, D. Mackowski, “A database of hexagonal column optical properties for wavelengths ranging between 0.2 mm to 30 mm produced for ANNEX 7,” contract 4b/3/02 (Department of the Environment, Food, and Rural Affairs, London, UK (2002).

World Meteorological Organization, The World Weather Watch Programme 1988–1997 (World Meteorological Organization, Geneva, 1987).

R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford U. Press, New York, 1989).

D. Diebel, M. Langevin, D. Klaes, P. Courtier, T. Phulpin, F. Cayla, G. Chalon, “The advanced atmospheric temperature sounder IASI—a new development for the polar satellite Metop,” presented at the 1997 Meteorological Satellite Data Users’ Conference, Brussels, Belgium, 29 September–3 October 1997 (European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany).

D. D. Turner, S. A. Ackerman, “Cloud phase and microphysical property retrieval using the atmospheric emitted radiance interferometer (AERI)” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 2002), p. 60.

S. A. Ackerman, H. E. Revercomb, R. O. Knuteson, P. Antonelli, “Analysis of the high-spectral resolution infrared sounder (HIS) radiances collected as part of the FIRE program,” in 11th Conference on Atmospheric Radiation (American Meteorological Society, Dallas, Texas, 2002), p. 245.

A. Eldering, Jet Propulsion Laboratory, Mail Stop 183-601, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 2002).

C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, Singapore, 2000), Chap. 2, pp. 37–41.

Ref. 27, p. 37, formula (2.80).

DISORT version 1.3 was released in March2000 and can be obtained from ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple_Scatt/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the three-layer atmosphere model. The surface temperature is T s . The temperatures of the three layers, T T , T m , and T s , are shown. The optical depth at the interface between the top layer and the middle layer is τ2. The optical depth at the interface between the middle layer and the bottom layer is τ1. The optical depth at the surface is τ0.

Fig. 2
Fig. 2

Plots of L(x) =exp[-(C 2/x 2 + 1)] -exp[-(C 1/x 2 + 1)] for three combinations of C 2 and C 1. Here x = 0 is the line center and x = 1 corresponds to the half-width of the Lorentzian line shape. Dotted curve, weak absorption. Solid and dashed-dotted curves, medium and strong absorption, respectively.

Fig. 3
Fig. 3

a, Simulated outgoing spectrum from 930 to 938 cm-1 based on the following configuration: temperature profile of the U.S. 1976 Standard Atmosphere, constant mass mixing ratio of CO2, r co2 = 5.0 × 10-4; cirrus cloud with optical depth 0.1 topping at 250 mb. The spectrum was calculated from LBLCARTS. b, The difference between the adjusted-surface-temperature spectrum and the cirrus spectrum (hereafter, the residual spectrum) shown in a. Refer to the text for the meaning of the adjusted-surface-temperature spectrum.

Fig. 4
Fig. 4

a, Same as Fig. 3a, except that the region is 744–748 cm-1. For the solid curves the ice particles were assumed to be spherical and the optical properties were computed by Mie scattering theory. For the curves that comprise circles the ice particles were assumed to be hexagonal, and optical properties compiled by Baran et al.24 were used. b, Same as Fig. 3b, except the region is 744–748 cm-1. The solid curve and the circles have same meanings as are in a. c, Simulated outgoing spectrum from 1260 to 1270 cm-1 based on the following configuration: temperature profile of the U.S. 1976 Standard Atmosphere, CH4 profile of the U.S. 1976 Standard Atmosphere, cirrus cloud with optical depth 0.1 topping at ∼250 mb. (d) Difference between the adjusted-surface-temperature spectrum and the cirrus spectrum shown in c.

Fig. 5
Fig. 5

a, Same as the solid curve in Fig. 4b, except that the region is 742–752 cm-1. b, Convolution of the spectrum in a, and a triangular function with FWHM = 0.04 cm-1. c, Same as b, except that the FWHM is 0.1 cm-1. d, Same as b, except that the FWHM is 0.5 cm-1.

Fig. 6
Fig. 6

a, Solid curve, residual spectrum from 742 to 745 cm-1 when the top of the cirrus is at 250 mb. Dashed curve, residual spectrum from 742 to 745 cm-1 when the top of the cirrus is at 450 mb. In both cases the cloud’s optical depth is 0.1. The spectra shown here are convolved with a triangular function with a FWHM of 0.1 cm-1. b, Solid curve, residual spectrum from 742 to 745 cm-1 with cloud optical depth τcloud = 0.2. Dashed curve, the residual spectrum from 742 to 745 cm-1 with cloud optical depth τcloud = 0.1. For both cases the cloud top is at 250 mb. The spectra shown here are convolved with a triangular function with a FWHM of 0.1 cm-1.

Fig. 7
Fig. 7

a, Dashed curve, difference between the retrieved spectrum and the original clear-sky spectrum. The original clear-sky spectrum was calculated based on a 1976 U.S. Standard Atmosphere temperature profile and a constant CO2 mass mixing ratio of 5.0 × 10-4. We obtained the retrieved spectrum by changing the temperatures in four layers (200–350 mb, 350–500 mb, 500–750 mb, and 750 mb to surface) by 1 K and -1 K alternately. Dotted curve, difference from the retrieved spectrum that we obtained by changing the temperatures in four layers by -1 K and 1 K alternately. The spectra shown here are convolved with a triangular function with a FWHM of 0.1 cm-1. b, Solid curve, difference between the adjusted-surface-temperature spectrum and the cirrus spectrum. Dashed curve, difference between the retrieved spectrum and the cirrus spectrum. We obtained the retrieved spectrum by adjusting the surface temperature as well as changing the temperatures in four layers by 1 K and -1 K alternately. Dotted curve, similar to dashed curve, except that we obtained the retrieved spectrum by changing the temperatures in four layers by -1 K and 1 K alternately. c, Same as a, except that the magnitude of the temperature change is 4 K. d, Same as b, except that the magnitude of the temperature change is 4 K.

Tables (1)

Tables Icon

Table 1 Degrees of Freedom for Signal for Clear-Sky Retrieval and Thin Cirrus Retrieval with Various Values of Instrumental Resolution (FWHM) and NESR

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

μ dIνdτ=Iν-Bν,
ITOAν=Bsνexp-τ0ν-0τ2ν BTνexp-τdτ-τ2ντ1ν Bmνexp-τdτ-τ1ντ0ν Bsνexp-τdτ =Bsνexp-τ1ν+Bmνexp-τ2ν-exp-τ1ν+BTν1-exp-τ2ν.
τ2ν-ν0=ρHTSTαLπν-ν02+αL2,
τ2x=C2x2+1,
τ1x=ρHTSTαLπν-ν02+αL2+ρHmSmαLπν-ν02+αL2 =C1x2+1,
ITOAx=exp-τcBs exp-C1x2+1+Bmexp-C2x2+1-exp-C1x2+1+BT1-exp-C2x2+1.
Bs=Bs exp-τc.
ITOAx=Bs exp-τcexp-C1x2+1+Bmexp-C2x2+1-exp-C1x2+1+BT1-exp-C2x2+1.
Rx=ITOA-ITOA =1-exp-τcBmexp-C2x2+1-exp-C1x2+1  Lx,
Lx=exp-C2x2+1-exp-C1x2+1.
Ix=exp-τcBs exp-C0x2+1+Bbexp-C1x2+1-exp-C0x2+1+Bmexp-C2x2+1-exp-C1x2+1+BT1-exp-C2x2+1.
Ix=exp-τcBs exp-C0x2+1+Bb1+δb×exp-C1x2+1-exp-C0x2+1+Bm1+δmexp-C2x2+1-exp-C1x2+1+BT1+δT1-exp-C2x2+1.
RxI-I =Bbδb+τcexp-C1x2+1-exp-C0x2+1+Bmδm+τcexp-C2x2+1-exp-C1x2+1+BTδT1-exp-C2x2+1.
BνT+ΔT=BνT+BνTT ΔT,
BνTT=T2hν3c2exphν/kT-1=BνTexphν/kTexphν/kT-1hνkT2.
ΔT=τckT2hν1-exp-hνkT.

Metrics