Abstract

Here the interaction between a laminar two-phase, non-pre-mixed counterflow flame and a vortex is examined. Special emphasis is given to the influence of different flame and vortex parameters on the extinction behavior of the flame. Simultaneaous planar laser-induced fluorescence of the CH radical layer produced by the flame and particle-image velocimetry measurements of the flowfield are used to characterize the flame-vortex interaction. These simultaneous diagnostics are used for the first time in this configuration. The extinction processes occurring during the flame-vortex interaction can be analyzed by this method, especially the influence of strain at the flame surface. The influence of the droplets on the extinction behavior appears clearly compared with a fully gaseous flame. The spray flame is weaker and extinguishes earlier than does a gaseous flame. In the measurements an additional broadband signal in the vicinity of the CH layer is probably due to the induced fluorescence of polycyclic aromatic hydrocarbons, excited at the same wavelength.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Renard, D. Thevenin, J. C. Rolon, S. Candel, “Dynamics of flame/vortex interactions,” Prog. Energy Combust. Sci. 26, 225–282 (2000).
    [CrossRef]
  2. J. C. Rolon, F. Aguerre, S. Candel, “Experiments on the interaction between a vortex and a strained diffusion flame,” Combust. Flame 100, 422–429 (1995).
    [CrossRef]
  3. G. J. Fiechtner, P. H. Renard, C. D. Carter, J. R. Gord, J. C. Rolon, “Injection of single and multiple vortices in an opposed-jet burner,” J. Visualization 2, 331–341 (2000).
    [CrossRef]
  4. P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface for a non-premixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
    [CrossRef]
  5. K. A. Watson, K. M. Lyons, J. M. Donbar, C. D. Carter, “Scalar and velocity field Measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
    [CrossRef]
  6. J. M. Donbar, J. F. Driscoll, C. D. Carter, “Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images,” Combust. Flame 122, 1–19 (2000).
    [CrossRef]
  7. Q.-V. Nguyen, P. H. Paul, “The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH,” Proceedings of the Combustion Institute 26, 357–364 (1996).
  8. V. S. Santoro, D. C. Kyritsis, A. Gomez, “An Experimental Study of Vortex-Flame Interaction in Counterflow Spray Diffusion Flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1023–1030.
  9. V. S. Santoro, A. Gomez, “Extinction and reignition in counterflow spray diffusion flames interacting with laminar vortices,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002) (to be published).
  10. M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counterflow diffusion flames using picosecond laser-induced flourescence,” Comb. Sci. Technol. 169, 25 (2002).
    [CrossRef]
  11. M. W. Renfro, G. B. King, N. M. Laurendeau, “Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: CH,” Combust. Flame 122, 139–150 (2000).
    [CrossRef]
  12. H. Böhm, F. Lacas, “On extinction limits and polycyclic aromatic hydrocarbon formation in strained counterflow diffusion flames from 1 to 6 bar,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2627–2634.
    [CrossRef]
  13. J. C. Rolon, D. Veynante, J.-P. Martin, F. Durst, “Counter jet stagnation flows,” Exp. Fluids 11, 313–324 (1991).
    [CrossRef]
  14. D. Durox, S. Ducrouix, F. Lacas, “Flow seeding with an air nebulizer,” Exp. Fluids 27, 408–413 (1999).
    [CrossRef]
  15. T. Maxworthy, “The structure and stability of vortex rings,” J. Fluid Mech. 51, 15–32 (1972).
    [CrossRef]
  16. C. J. Mueller, J. F. Driscoll, D. J. Sutkus, W. L. Roberts, M. C. Drake, M. D. Smooke, “Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: to assess flamelet models,” Combust. Flame 100, 323–331 (1995).
    [CrossRef]
  17. D. Thevenin, P. H. Renard, G. J. Fiechtner, J. R. Gord, J. C. Rolon, “Regimes of non-premixed flame-vortex interactions,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa.2002), Vol. 28, pp. 2101–2108.
  18. T. R. Meyer, G. J. Fiechtner, S. P. Gogineni, J. C. Rolon, C. D. Carter, J. R. Gord, “Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-Air counterflow diffusion flames,” Exp. Fluids (to be published).
  19. N. L. Garland, D. R. Crosley, “Energy transfer processes in CH A2Δ and B2∑- in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
    [CrossRef]
  20. V. R. Katta, W. M. Roquemore, “Extinction in methane-air counterflow diffusion flame—a direct numerical study,” in Proceedings of Central States the Spring Technical Meeting (Combustion Institute, Pittsburgh, Pa.1996), pp. 449–454.
  21. H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 100, 173–221 (1997).
    [CrossRef]
  22. A. Ratner, J. F. Driscoll, J. M. Donbar, C. D. Carter, J. A. Mullin, “Reaction zone structure of non-premixed turbulent flames in the intensely wrinkled regime,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 245–252.
    [CrossRef]
  23. V. S. Santoro, D. C. Kyritsis, A. Linan, A. Gomez, “Vortex-induced extinction behavior in methanol gaseous flames: a comparison with quasi-steady extinction,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2109–2116.
    [CrossRef]

2002 (1)

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counterflow diffusion flames using picosecond laser-induced flourescence,” Comb. Sci. Technol. 169, 25 (2002).
[CrossRef]

2000 (4)

M. W. Renfro, G. B. King, N. M. Laurendeau, “Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: CH,” Combust. Flame 122, 139–150 (2000).
[CrossRef]

J. M. Donbar, J. F. Driscoll, C. D. Carter, “Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images,” Combust. Flame 122, 1–19 (2000).
[CrossRef]

P. H. Renard, D. Thevenin, J. C. Rolon, S. Candel, “Dynamics of flame/vortex interactions,” Prog. Energy Combust. Sci. 26, 225–282 (2000).
[CrossRef]

G. J. Fiechtner, P. H. Renard, C. D. Carter, J. R. Gord, J. C. Rolon, “Injection of single and multiple vortices in an opposed-jet burner,” J. Visualization 2, 331–341 (2000).
[CrossRef]

1999 (3)

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface for a non-premixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, C. D. Carter, “Scalar and velocity field Measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

D. Durox, S. Ducrouix, F. Lacas, “Flow seeding with an air nebulizer,” Exp. Fluids 27, 408–413 (1999).
[CrossRef]

1997 (1)

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 100, 173–221 (1997).
[CrossRef]

1996 (1)

Q.-V. Nguyen, P. H. Paul, “The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH,” Proceedings of the Combustion Institute 26, 357–364 (1996).

1995 (2)

J. C. Rolon, F. Aguerre, S. Candel, “Experiments on the interaction between a vortex and a strained diffusion flame,” Combust. Flame 100, 422–429 (1995).
[CrossRef]

C. J. Mueller, J. F. Driscoll, D. J. Sutkus, W. L. Roberts, M. C. Drake, M. D. Smooke, “Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: to assess flamelet models,” Combust. Flame 100, 323–331 (1995).
[CrossRef]

1991 (1)

J. C. Rolon, D. Veynante, J.-P. Martin, F. Durst, “Counter jet stagnation flows,” Exp. Fluids 11, 313–324 (1991).
[CrossRef]

1985 (1)

N. L. Garland, D. R. Crosley, “Energy transfer processes in CH A2Δ and B2∑- in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef]

1972 (1)

T. Maxworthy, “The structure and stability of vortex rings,” J. Fluid Mech. 51, 15–32 (1972).
[CrossRef]

Aguerre, F.

J. C. Rolon, F. Aguerre, S. Candel, “Experiments on the interaction between a vortex and a strained diffusion flame,” Combust. Flame 100, 422–429 (1995).
[CrossRef]

Böhm, H.

H. Böhm, F. Lacas, “On extinction limits and polycyclic aromatic hydrocarbon formation in strained counterflow diffusion flames from 1 to 6 bar,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2627–2634.
[CrossRef]

Candel, S.

P. H. Renard, D. Thevenin, J. C. Rolon, S. Candel, “Dynamics of flame/vortex interactions,” Prog. Energy Combust. Sci. 26, 225–282 (2000).
[CrossRef]

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface for a non-premixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

J. C. Rolon, F. Aguerre, S. Candel, “Experiments on the interaction between a vortex and a strained diffusion flame,” Combust. Flame 100, 422–429 (1995).
[CrossRef]

Carter, C. D.

J. M. Donbar, J. F. Driscoll, C. D. Carter, “Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images,” Combust. Flame 122, 1–19 (2000).
[CrossRef]

G. J. Fiechtner, P. H. Renard, C. D. Carter, J. R. Gord, J. C. Rolon, “Injection of single and multiple vortices in an opposed-jet burner,” J. Visualization 2, 331–341 (2000).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, C. D. Carter, “Scalar and velocity field Measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

A. Ratner, J. F. Driscoll, J. M. Donbar, C. D. Carter, J. A. Mullin, “Reaction zone structure of non-premixed turbulent flames in the intensely wrinkled regime,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 245–252.
[CrossRef]

T. R. Meyer, G. J. Fiechtner, S. P. Gogineni, J. C. Rolon, C. D. Carter, J. R. Gord, “Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-Air counterflow diffusion flames,” Exp. Fluids (to be published).

Chaturvedy, A.

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counterflow diffusion flames using picosecond laser-induced flourescence,” Comb. Sci. Technol. 169, 25 (2002).
[CrossRef]

Crosley, D. R.

N. L. Garland, D. R. Crosley, “Energy transfer processes in CH A2Δ and B2∑- in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef]

Donbar, J. M.

J. M. Donbar, J. F. Driscoll, C. D. Carter, “Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images,” Combust. Flame 122, 1–19 (2000).
[CrossRef]

K. A. Watson, K. M. Lyons, J. M. Donbar, C. D. Carter, “Scalar and velocity field Measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

A. Ratner, J. F. Driscoll, J. M. Donbar, C. D. Carter, J. A. Mullin, “Reaction zone structure of non-premixed turbulent flames in the intensely wrinkled regime,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 245–252.
[CrossRef]

Drake, M. C.

C. J. Mueller, J. F. Driscoll, D. J. Sutkus, W. L. Roberts, M. C. Drake, M. D. Smooke, “Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: to assess flamelet models,” Combust. Flame 100, 323–331 (1995).
[CrossRef]

Driscoll, J. F.

J. M. Donbar, J. F. Driscoll, C. D. Carter, “Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images,” Combust. Flame 122, 1–19 (2000).
[CrossRef]

C. J. Mueller, J. F. Driscoll, D. J. Sutkus, W. L. Roberts, M. C. Drake, M. D. Smooke, “Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: to assess flamelet models,” Combust. Flame 100, 323–331 (1995).
[CrossRef]

A. Ratner, J. F. Driscoll, J. M. Donbar, C. D. Carter, J. A. Mullin, “Reaction zone structure of non-premixed turbulent flames in the intensely wrinkled regime,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 245–252.
[CrossRef]

Ducrouix, S.

D. Durox, S. Ducrouix, F. Lacas, “Flow seeding with an air nebulizer,” Exp. Fluids 27, 408–413 (1999).
[CrossRef]

Durox, D.

D. Durox, S. Ducrouix, F. Lacas, “Flow seeding with an air nebulizer,” Exp. Fluids 27, 408–413 (1999).
[CrossRef]

Durst, F.

J. C. Rolon, D. Veynante, J.-P. Martin, F. Durst, “Counter jet stagnation flows,” Exp. Fluids 11, 313–324 (1991).
[CrossRef]

Fiechtner, G. J.

G. J. Fiechtner, P. H. Renard, C. D. Carter, J. R. Gord, J. C. Rolon, “Injection of single and multiple vortices in an opposed-jet burner,” J. Visualization 2, 331–341 (2000).
[CrossRef]

T. R. Meyer, G. J. Fiechtner, S. P. Gogineni, J. C. Rolon, C. D. Carter, J. R. Gord, “Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-Air counterflow diffusion flames,” Exp. Fluids (to be published).

D. Thevenin, P. H. Renard, G. J. Fiechtner, J. R. Gord, J. C. Rolon, “Regimes of non-premixed flame-vortex interactions,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa.2002), Vol. 28, pp. 2101–2108.

Frenklach, M.

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 100, 173–221 (1997).
[CrossRef]

Garland, N. L.

N. L. Garland, D. R. Crosley, “Energy transfer processes in CH A2Δ and B2∑- in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef]

Gogineni, S. P.

T. R. Meyer, G. J. Fiechtner, S. P. Gogineni, J. C. Rolon, C. D. Carter, J. R. Gord, “Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-Air counterflow diffusion flames,” Exp. Fluids (to be published).

Gomez, A.

V. S. Santoro, A. Gomez, “Extinction and reignition in counterflow spray diffusion flames interacting with laminar vortices,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002) (to be published).

V. S. Santoro, D. C. Kyritsis, A. Linan, A. Gomez, “Vortex-induced extinction behavior in methanol gaseous flames: a comparison with quasi-steady extinction,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2109–2116.
[CrossRef]

V. S. Santoro, D. C. Kyritsis, A. Gomez, “An Experimental Study of Vortex-Flame Interaction in Counterflow Spray Diffusion Flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1023–1030.

Gord, J. R.

G. J. Fiechtner, P. H. Renard, C. D. Carter, J. R. Gord, J. C. Rolon, “Injection of single and multiple vortices in an opposed-jet burner,” J. Visualization 2, 331–341 (2000).
[CrossRef]

T. R. Meyer, G. J. Fiechtner, S. P. Gogineni, J. C. Rolon, C. D. Carter, J. R. Gord, “Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-Air counterflow diffusion flames,” Exp. Fluids (to be published).

D. Thevenin, P. H. Renard, G. J. Fiechtner, J. R. Gord, J. C. Rolon, “Regimes of non-premixed flame-vortex interactions,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa.2002), Vol. 28, pp. 2101–2108.

Katta, V. R.

V. R. Katta, W. M. Roquemore, “Extinction in methane-air counterflow diffusion flame—a direct numerical study,” in Proceedings of Central States the Spring Technical Meeting (Combustion Institute, Pittsburgh, Pa.1996), pp. 449–454.

King, G. B.

M. W. Renfro, G. B. King, N. M. Laurendeau, “Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: CH,” Combust. Flame 122, 139–150 (2000).
[CrossRef]

Kyritsis, D. C.

V. S. Santoro, D. C. Kyritsis, A. Gomez, “An Experimental Study of Vortex-Flame Interaction in Counterflow Spray Diffusion Flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1023–1030.

V. S. Santoro, D. C. Kyritsis, A. Linan, A. Gomez, “Vortex-induced extinction behavior in methanol gaseous flames: a comparison with quasi-steady extinction,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2109–2116.
[CrossRef]

Lacas, F.

D. Durox, S. Ducrouix, F. Lacas, “Flow seeding with an air nebulizer,” Exp. Fluids 27, 408–413 (1999).
[CrossRef]

H. Böhm, F. Lacas, “On extinction limits and polycyclic aromatic hydrocarbon formation in strained counterflow diffusion flames from 1 to 6 bar,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2627–2634.
[CrossRef]

Laurendeau, N. M.

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counterflow diffusion flames using picosecond laser-induced flourescence,” Comb. Sci. Technol. 169, 25 (2002).
[CrossRef]

M. W. Renfro, G. B. King, N. M. Laurendeau, “Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: CH,” Combust. Flame 122, 139–150 (2000).
[CrossRef]

Linan, A.

V. S. Santoro, D. C. Kyritsis, A. Linan, A. Gomez, “Vortex-induced extinction behavior in methanol gaseous flames: a comparison with quasi-steady extinction,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2109–2116.
[CrossRef]

Lyons, K. M.

K. A. Watson, K. M. Lyons, J. M. Donbar, C. D. Carter, “Scalar and velocity field Measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

Martin, J.-P.

J. C. Rolon, D. Veynante, J.-P. Martin, F. Durst, “Counter jet stagnation flows,” Exp. Fluids 11, 313–324 (1991).
[CrossRef]

Maxworthy, T.

T. Maxworthy, “The structure and stability of vortex rings,” J. Fluid Mech. 51, 15–32 (1972).
[CrossRef]

Meyer, T. R.

T. R. Meyer, G. J. Fiechtner, S. P. Gogineni, J. C. Rolon, C. D. Carter, J. R. Gord, “Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-Air counterflow diffusion flames,” Exp. Fluids (to be published).

Mueller, C. J.

C. J. Mueller, J. F. Driscoll, D. J. Sutkus, W. L. Roberts, M. C. Drake, M. D. Smooke, “Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: to assess flamelet models,” Combust. Flame 100, 323–331 (1995).
[CrossRef]

Mullin, J. A.

A. Ratner, J. F. Driscoll, J. M. Donbar, C. D. Carter, J. A. Mullin, “Reaction zone structure of non-premixed turbulent flames in the intensely wrinkled regime,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 245–252.
[CrossRef]

Nguyen, Q.-V.

Q.-V. Nguyen, P. H. Paul, “The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH,” Proceedings of the Combustion Institute 26, 357–364 (1996).

Paul, P. H.

Q.-V. Nguyen, P. H. Paul, “The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH,” Proceedings of the Combustion Institute 26, 357–364 (1996).

Ratner, A.

A. Ratner, J. F. Driscoll, J. M. Donbar, C. D. Carter, J. A. Mullin, “Reaction zone structure of non-premixed turbulent flames in the intensely wrinkled regime,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 245–252.
[CrossRef]

Renard, P. H.

P. H. Renard, D. Thevenin, J. C. Rolon, S. Candel, “Dynamics of flame/vortex interactions,” Prog. Energy Combust. Sci. 26, 225–282 (2000).
[CrossRef]

G. J. Fiechtner, P. H. Renard, C. D. Carter, J. R. Gord, J. C. Rolon, “Injection of single and multiple vortices in an opposed-jet burner,” J. Visualization 2, 331–341 (2000).
[CrossRef]

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface for a non-premixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

D. Thevenin, P. H. Renard, G. J. Fiechtner, J. R. Gord, J. C. Rolon, “Regimes of non-premixed flame-vortex interactions,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa.2002), Vol. 28, pp. 2101–2108.

Renfro, M. W.

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counterflow diffusion flames using picosecond laser-induced flourescence,” Comb. Sci. Technol. 169, 25 (2002).
[CrossRef]

M. W. Renfro, G. B. King, N. M. Laurendeau, “Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: CH,” Combust. Flame 122, 139–150 (2000).
[CrossRef]

Roberts, W. L.

C. J. Mueller, J. F. Driscoll, D. J. Sutkus, W. L. Roberts, M. C. Drake, M. D. Smooke, “Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: to assess flamelet models,” Combust. Flame 100, 323–331 (1995).
[CrossRef]

Rolon, J. C.

P. H. Renard, D. Thevenin, J. C. Rolon, S. Candel, “Dynamics of flame/vortex interactions,” Prog. Energy Combust. Sci. 26, 225–282 (2000).
[CrossRef]

G. J. Fiechtner, P. H. Renard, C. D. Carter, J. R. Gord, J. C. Rolon, “Injection of single and multiple vortices in an opposed-jet burner,” J. Visualization 2, 331–341 (2000).
[CrossRef]

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface for a non-premixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

J. C. Rolon, F. Aguerre, S. Candel, “Experiments on the interaction between a vortex and a strained diffusion flame,” Combust. Flame 100, 422–429 (1995).
[CrossRef]

J. C. Rolon, D. Veynante, J.-P. Martin, F. Durst, “Counter jet stagnation flows,” Exp. Fluids 11, 313–324 (1991).
[CrossRef]

D. Thevenin, P. H. Renard, G. J. Fiechtner, J. R. Gord, J. C. Rolon, “Regimes of non-premixed flame-vortex interactions,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa.2002), Vol. 28, pp. 2101–2108.

T. R. Meyer, G. J. Fiechtner, S. P. Gogineni, J. C. Rolon, C. D. Carter, J. R. Gord, “Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-Air counterflow diffusion flames,” Exp. Fluids (to be published).

Roquemore, W. M.

V. R. Katta, W. M. Roquemore, “Extinction in methane-air counterflow diffusion flame—a direct numerical study,” in Proceedings of Central States the Spring Technical Meeting (Combustion Institute, Pittsburgh, Pa.1996), pp. 449–454.

Santoro, V. S.

V. S. Santoro, D. C. Kyritsis, A. Gomez, “An Experimental Study of Vortex-Flame Interaction in Counterflow Spray Diffusion Flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1023–1030.

V. S. Santoro, D. C. Kyritsis, A. Linan, A. Gomez, “Vortex-induced extinction behavior in methanol gaseous flames: a comparison with quasi-steady extinction,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2109–2116.
[CrossRef]

V. S. Santoro, A. Gomez, “Extinction and reignition in counterflow spray diffusion flames interacting with laminar vortices,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002) (to be published).

Smooke, M. D.

C. J. Mueller, J. F. Driscoll, D. J. Sutkus, W. L. Roberts, M. C. Drake, M. D. Smooke, “Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: to assess flamelet models,” Combust. Flame 100, 323–331 (1995).
[CrossRef]

Sutkus, D. J.

C. J. Mueller, J. F. Driscoll, D. J. Sutkus, W. L. Roberts, M. C. Drake, M. D. Smooke, “Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: to assess flamelet models,” Combust. Flame 100, 323–331 (1995).
[CrossRef]

Thevenin, D.

P. H. Renard, D. Thevenin, J. C. Rolon, S. Candel, “Dynamics of flame/vortex interactions,” Prog. Energy Combust. Sci. 26, 225–282 (2000).
[CrossRef]

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface for a non-premixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

D. Thevenin, P. H. Renard, G. J. Fiechtner, J. R. Gord, J. C. Rolon, “Regimes of non-premixed flame-vortex interactions,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa.2002), Vol. 28, pp. 2101–2108.

Veynante, D.

J. C. Rolon, D. Veynante, J.-P. Martin, F. Durst, “Counter jet stagnation flows,” Exp. Fluids 11, 313–324 (1991).
[CrossRef]

Wang, H.

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 100, 173–221 (1997).
[CrossRef]

Watson, K. A.

K. A. Watson, K. M. Lyons, J. M. Donbar, C. D. Carter, “Scalar and velocity field Measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

Appl. Opt. (1)

N. L. Garland, D. R. Crosley, “Energy transfer processes in CH A2Δ and B2∑- in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef]

Comb. Sci. Technol. (1)

M. W. Renfro, A. Chaturvedy, N. M. Laurendeau, “Semi-quantitative measurements of CH concentration in atmospheric-pressure counterflow diffusion flames using picosecond laser-induced flourescence,” Comb. Sci. Technol. 169, 25 (2002).
[CrossRef]

Combust. Flame (1)

P. H. Renard, J. C. Rolon, D. Thevenin, S. Candel, “Investigations of heat release, extinction, and time evolution of the flame surface for a non-premixed flame interacting with a vortex,” Combust. Flame 117, 189–205 (1999).
[CrossRef]

Combust. Flame (6)

K. A. Watson, K. M. Lyons, J. M. Donbar, C. D. Carter, “Scalar and velocity field Measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999).
[CrossRef]

J. M. Donbar, J. F. Driscoll, C. D. Carter, “Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images,” Combust. Flame 122, 1–19 (2000).
[CrossRef]

M. W. Renfro, G. B. King, N. M. Laurendeau, “Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: CH,” Combust. Flame 122, 139–150 (2000).
[CrossRef]

J. C. Rolon, F. Aguerre, S. Candel, “Experiments on the interaction between a vortex and a strained diffusion flame,” Combust. Flame 100, 422–429 (1995).
[CrossRef]

H. Wang, M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame 100, 173–221 (1997).
[CrossRef]

C. J. Mueller, J. F. Driscoll, D. J. Sutkus, W. L. Roberts, M. C. Drake, M. D. Smooke, “Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: to assess flamelet models,” Combust. Flame 100, 323–331 (1995).
[CrossRef]

Exp. Fluids (2)

J. C. Rolon, D. Veynante, J.-P. Martin, F. Durst, “Counter jet stagnation flows,” Exp. Fluids 11, 313–324 (1991).
[CrossRef]

D. Durox, S. Ducrouix, F. Lacas, “Flow seeding with an air nebulizer,” Exp. Fluids 27, 408–413 (1999).
[CrossRef]

J. Visualization (1)

G. J. Fiechtner, P. H. Renard, C. D. Carter, J. R. Gord, J. C. Rolon, “Injection of single and multiple vortices in an opposed-jet burner,” J. Visualization 2, 331–341 (2000).
[CrossRef]

J. Fluid Mech. (1)

T. Maxworthy, “The structure and stability of vortex rings,” J. Fluid Mech. 51, 15–32 (1972).
[CrossRef]

Proceedings of the Combustion Institute (1)

Q.-V. Nguyen, P. H. Paul, “The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH,” Proceedings of the Combustion Institute 26, 357–364 (1996).

Prog. Energy Combust. Sci. (1)

P. H. Renard, D. Thevenin, J. C. Rolon, S. Candel, “Dynamics of flame/vortex interactions,” Prog. Energy Combust. Sci. 26, 225–282 (2000).
[CrossRef]

Other (8)

V. S. Santoro, D. C. Kyritsis, A. Gomez, “An Experimental Study of Vortex-Flame Interaction in Counterflow Spray Diffusion Flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1023–1030.

V. S. Santoro, A. Gomez, “Extinction and reignition in counterflow spray diffusion flames interacting with laminar vortices,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002) (to be published).

H. Böhm, F. Lacas, “On extinction limits and polycyclic aromatic hydrocarbon formation in strained counterflow diffusion flames from 1 to 6 bar,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2627–2634.
[CrossRef]

D. Thevenin, P. H. Renard, G. J. Fiechtner, J. R. Gord, J. C. Rolon, “Regimes of non-premixed flame-vortex interactions,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa.2002), Vol. 28, pp. 2101–2108.

T. R. Meyer, G. J. Fiechtner, S. P. Gogineni, J. C. Rolon, C. D. Carter, J. R. Gord, “Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-Air counterflow diffusion flames,” Exp. Fluids (to be published).

A. Ratner, J. F. Driscoll, J. M. Donbar, C. D. Carter, J. A. Mullin, “Reaction zone structure of non-premixed turbulent flames in the intensely wrinkled regime,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 245–252.
[CrossRef]

V. S. Santoro, D. C. Kyritsis, A. Linan, A. Gomez, “Vortex-induced extinction behavior in methanol gaseous flames: a comparison with quasi-steady extinction,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 2109–2116.
[CrossRef]

V. R. Katta, W. M. Roquemore, “Extinction in methane-air counterflow diffusion flame—a direct numerical study,” in Proceedings of Central States the Spring Technical Meeting (Combustion Institute, Pittsburgh, Pa.1996), pp. 449–454.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Two-phase counterflow burner in a non-pre-mixed configuration with liquid fuel coming from the lower nozzle.

Fig. 2
Fig. 2

Experimental setup for the simultaneous PIV and CH-PLIF measurements in two-phase counterflow diffusion flame.

Fig. 3
Fig. 3

Raw on-resonant image, raw off-resonant image, and the difference image used for evaluation measurements, for a nonperturbed fully gaseous case with Φ = 4 and y = 0.

Fig. 4
Fig. 4

Intensity profiles for Φ = 3.97 (upper plots) and Φ = 4.90 (lower plots) flames interacting with vortex A at the centerline (labeled pixel 128) and at a location 2/3 shifted from the centerline (labeled pixel 42) at two times t = 8 ms (left plots) and t = 18 ms (right plots).

Fig. 5
Fig. 5

Numerical calculation of a methane-air counterflow diffusion flame. The separation of the CH and C6H6 layers appears clearly in the calculation.

Fig. 6
Fig. 6

Time series of flame-vortex interaction at Φ = 4.43 and vortex C (Table 2).

Fig. 7
Fig. 7

Temporal evolution of the CH signal in the center of the flame, for the same global mixture ratio of 4.43 and the two-phase flame (Case 2) comparing the influence of two different vortices A and C, and for the same vortex C comparing the influence of the droplets with the fully gaseous flame.

Fig. 8
Fig. 8

Temporal evolution of the peak fuel-side normal strain rate in the center of the flame, comparing for the same global mixture ratio of 4.43 and the two-phase flame (Case 2) comparing the influence of two different vortices A and C.

Fig. 9
Fig. 9

Temporal evolution of the flame surface during the flame-vortex interaction for the same global mixture ratio of 4.43 and the same vortex C, comparing the influence of the droplets with the fully gaseous flame.

Tables (2)

Tables Icon

Table 1 Flame Parameters Used in the Experiments Comparing Different Global Mixture Ratiosa

Tables Icon

Table 2 Vortex Parameters Used in the Experiments Comparing Different Vortex Strengthsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ vort   =   Δ V vort 2 τ r d 4 ,

Metrics