Abstract

We present what is to our knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber (20-m diameter, 13-m path length) of a 600-MW lignite-fired power plant. A fiber-coupled distributed-feedback diode-laser module at 1.56 μm served for CO detection, and a Fabry-Perot diode laser at 813 nm was used to determine H2O concentrations and temperature from multiline water spectra. Despite severe light losses (transmission, <10-3) and strong background radiation we achieved a resolution of 1.9 × 10-4 (1σ) fractional absorption, equivalent to 200 parts in 106 by volume of CO (at 1450 K, 105 Pa) with 30-s averaging time.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Stultz, J. B. Kitto, Steam: Its Generation and Use (Babcock Wilcox, Barberton, Ohio1992).
  2. H. Spliethoff, “Verbrennung fester Brennstoffe zur Strom- und Wärmeerzeugung,” progress report, series 6, number 443 (VDI Verlag, Düsseldorf, Germany, 2000).
  3. P. T. Mosley, J. O. W. Norris, D. E. Williams, eds., Techniques and Mechanisms in Gas Sensing (Adam Hilger, New York, 1991).
  4. R. T. Ku, J. O. Sample, E. David Hinkley, “Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system,” Appl. Opt. 14, 854–861 (1975).
    [CrossRef] [PubMed]
  5. R. K. Hanson, “Absorption spectroscopy in sooting flames using a tunable diode laser,” Appl. Opt. 19, 482–484 (1980).
    [CrossRef] [PubMed]
  6. S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
    [CrossRef]
  7. P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta A 52, 805–822 (1996).
    [CrossRef]
  8. J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, P. Hassanzadeh, “Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame,” Appl. Opt. 32, 6082–6089 (1993).
    [CrossRef]
  9. P. H. Krupenie, “The band spectrum of carbon monoxide,” Natl. Stand. Ref. Data Ser.NBS 5 (U.S. Government Printing Office, Washington, D.C., 1966).
  10. H. Sasada, K. Yamada, “Calibration lines of HCN in the 1.5 μm region,” Appl. Opt. 29, 3535–3547 (1990).
    [CrossRef] [PubMed]
  11. J.-C. Nicolas, A. N. Baranov, Y. Cuminal, Y. Rouillard, C. Alibert, “Tunable diode laser absorption spectroscopy of carbon monoxide around 2.35 μm,” Appl. Opt. 37, 7906–7911 (1998).
    [CrossRef]
  12. M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurement of CO, CO2, H2O and temperature using diode laser absorption spectroscopy,” Proc. Combust. Inst. 28, 407–413 (2000).
    [CrossRef]
  13. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
    [CrossRef]
  14. A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
    [CrossRef]
  15. A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
    [CrossRef] [PubMed]
  16. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
    [CrossRef]
  17. D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
    [CrossRef] [PubMed]
  18. M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
    [CrossRef]
  19. D. B. Oh, M. E. Paige, D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499–2501 (1998).
    [CrossRef]
  20. L. G. Blevins, W. M. Pitts, “Carbon monoxide measurement using a near-infrared tunable diode laser,” in National Institute of Standards and Technology Annual Conference on Fire Research: Book of Abstracts. November 2–5, 1998, Gaithersburg, Md., K. A. Beall, ed. Natl. Inst. Stand. Technol. Spec. Publ. 21–22 (1998).
  21. L. G. Blevins, B. W. Peterson, “Obtaining and interpreting near-infrared wavelength modulation absorption signals from hot fire gases: practical issues,” in Proceedings of Fall Technical Meeting, Combustion Institute/Eastern States Section (Combustion Institute, Pittsburgh, Pa., 1999), pp. 85–88.
  22. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
    [CrossRef]
  23. J. J. Nikkari, J. M. Di Iorio, M. J. Thomson, “In situ combustion measurements of CO, H2O, and temperature with a 1.58-μm diode laser and two-tone frequency modulation,” Appl. Opt. 41, 446–452 (2002).
    [CrossRef] [PubMed]
  24. M. G. Allen, B. L. Upschulte, D. M. Sonnenfroh, W. J. Kessler, P. A. Mulhall, “Overview of diode laser measurements in large-scale test facilities,” paper AIAA-2000-2452, presented at the 21st Aerodynamic Measurement Technology and Ground Testing Conference, Denver, Colo., 19–22 June 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 2000–2452.
  25. K. Muta, M. Tanoura, H. Honda, “In-situ measurement of CO by tunable diode laser absorption spectroscopy in a large scale waste test furnace,” presented at the International Laser Sensing Symposium, Fukui, Japan, 6–8 September 1999.
  26. H. E. Schlosser, B. A. Williams, R. S. Sheinson, J. W. Fleming, V. Ebert, “In-situ-determination of molecular oxygen concentration in full-scale fire suppression tests using TDLAS,” in Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2001), paper 164.
  27. V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).
  28. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
    [CrossRef]
  29. H. Pitz, T. Fernholz, C. Giesemann, V. Ebert, “Diode-laser-based in-situ CH4-detection for the surveillance of ignition processes in gas-fired power-plants,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 111–113.
  30. E. Schlosser, T. Fernholz, H. Teichert, V. Ebert, “In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347–2359 (2002).
    [CrossRef]
  31. P. Vogel, V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
    [CrossRef]
  32. T. Fernholz, H. Pitz, V. Ebert, “In-situ monitoring of water vapor and gas temperature in a coal fired power-plant using near-infrared diode lasers,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 77–79.
  33. V. Ebert, K.-U. Pleban, J. Wolfrum, “In-situ oxygen-monitoring using near-infrared diode lasers and wavelength modulation spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 206–209.
  34. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  35. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  36. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  37. L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”
  38. Further information on HITRAN and HITEMP available from www.hitran.com .

2002 (3)

2001 (2)

P. Vogel, V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
[CrossRef]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

2000 (3)

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurement of CO, CO2, H2O and temperature using diode laser absorption spectroscopy,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

1999 (1)

1998 (4)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

J.-C. Nicolas, A. N. Baranov, Y. Cuminal, Y. Rouillard, C. Alibert, “Tunable diode laser absorption spectroscopy of carbon monoxide around 2.35 μm,” Appl. Opt. 37, 7906–7911 (1998).
[CrossRef]

D. B. Oh, M. E. Paige, D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499–2501 (1998).
[CrossRef]

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

1997 (3)

1996 (1)

P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta A 52, 805–822 (1996).
[CrossRef]

1993 (1)

1992 (2)

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

1990 (1)

1981 (1)

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

1980 (1)

1975 (1)

Ahvazi, B.

Alibert, C.

Allen, M.

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Allen, M. G.

Baer, D. S.

Baranov, A. N.

Benner, D. C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Blevins, L. G.

L. G. Blevins, B. W. Peterson, “Obtaining and interpreting near-infrared wavelength modulation absorption signals from hot fire gases: practical issues,” in Proceedings of Fall Technical Meeting, Combustion Institute/Eastern States Section (Combustion Institute, Pittsburgh, Pa., 1999), pp. 85–88.

L. G. Blevins, W. M. Pitts, “Carbon monoxide measurement using a near-infrared tunable diode laser,” in National Institute of Standards and Technology Annual Conference on Fire Research: Book of Abstracts. November 2–5, 1998, Gaithersburg, Md., K. A. Beall, ed. Natl. Inst. Stand. Technol. Spec. Publ. 21–22 (1998).

Bomse, D. S.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Camy-Peret, C.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Capasso, F.

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Cho, A. Y.

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Connolly, J. C.

Corsi, C.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Cuminal, Y.

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

David Hinkley, E.

Devi, V. M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Di Iorio, J. M.

Durante, W.

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Ebert, V.

E. Schlosser, T. Fernholz, H. Teichert, V. Ebert, “In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347–2359 (2002).
[CrossRef]

P. Vogel, V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
[CrossRef]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

H. Pitz, T. Fernholz, C. Giesemann, V. Ebert, “Diode-laser-based in-situ CH4-detection for the surveillance of ignition processes in gas-fired power-plants,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 111–113.

H. E. Schlosser, B. A. Williams, R. S. Sheinson, J. W. Fleming, V. Ebert, “In-situ-determination of molecular oxygen concentration in full-scale fire suppression tests using TDLAS,” in Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2001), paper 164.

T. Fernholz, H. Pitz, V. Ebert, “In-situ monitoring of water vapor and gas temperature in a coal fired power-plant using near-infrared diode lasers,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 77–79.

V. Ebert, K.-U. Pleban, J. Wolfrum, “In-situ oxygen-monitoring using near-infrared diode lasers and wavelength modulation spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 206–209.

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Elreedy, S.

Fernholz, T.

E. Schlosser, T. Fernholz, H. Teichert, V. Ebert, “In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347–2359 (2002).
[CrossRef]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

H. Pitz, T. Fernholz, C. Giesemann, V. Ebert, “Diode-laser-based in-situ CH4-detection for the surveillance of ignition processes in gas-fired power-plants,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 111–113.

T. Fernholz, H. Pitz, V. Ebert, “In-situ monitoring of water vapor and gas temperature in a coal fired power-plant using near-infrared diode lasers,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 77–79.

Fitzer, J.

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

Flaud, J. M.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Fleming, J. W.

H. E. Schlosser, B. A. Williams, R. S. Sheinson, J. W. Fleming, V. Ebert, “In-situ-determination of molecular oxygen concentration in full-scale fire suppression tests using TDLAS,” in Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2001), paper 164.

Gabrysch, M.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Garbuzov, D. Z.

Gerstenberg, I.

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

Giesemann, C.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

H. Pitz, T. Fernholz, C. Giesemann, V. Ebert, “Diode-laser-based in-situ CH4-detection for the surveillance of ignition processes in gas-fired power-plants,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 111–113.

Gmachl, C.

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Goldmann, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Goorvitch, D.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Hanson, R. K.

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurement of CO, CO2, H2O and temperature using diode laser absorption spectroscopy,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

R. K. Hanson, “Absorption spectroscopy in sooting flames using a tunable diode laser,” Appl. Opt. 19, 482–484 (1980).
[CrossRef] [PubMed]

Hassanzadeh, P.

Hawkins, R. L.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Honda, H.

K. Muta, M. Tanoura, H. Honda, “In-situ measurement of CO by tunable diode laser absorption spectroscopy in a large scale waste test furnace,” presented at the International Laser Sensing Symposium, Fukui, Japan, 6–8 September 1999.

Inguscio, M.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Jaritz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

Jochem, M.

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kessler, W. J.

M. G. Allen, B. L. Upschulte, D. M. Sonnenfroh, W. J. Kessler, P. A. Mulhall, “Overview of diode laser measurements in large-scale test facilities,” paper AIAA-2000-2452, presented at the 21st Aerodynamic Measurement Technology and Ground Testing Conference, Denver, Colo., 19–22 June 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 2000–2452.

Kitto, J. B.

S. C. Stultz, J. B. Kitto, Steam: Its Generation and Use (Babcock Wilcox, Barberton, Ohio1992).

Köhler, R.

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Kosterev, A. A.

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Krupenie, P. H.

P. H. Krupenie, “The band spectrum of carbon monoxide,” Natl. Stand. Ref. Data Ser.NBS 5 (U.S. Government Printing Office, Washington, D.C., 1966).

Ku, R. T.

Maiorov, M.

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Martin, J.

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Mihalcea, R. M.

Miller, J. H.

Mulhall, P. A.

M. G. Allen, B. L. Upschulte, D. M. Sonnenfroh, W. J. Kessler, P. A. Mulhall, “Overview of diode laser measurements in large-scale test facilities,” paper AIAA-2000-2452, presented at the 21st Aerodynamic Measurement Technology and Ground Testing Conference, Denver, Colo., 19–22 June 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 2000–2452.

Muta, K.

K. Muta, M. Tanoura, H. Honda, “In-situ measurement of CO by tunable diode laser absorption spectroscopy in a large scale waste test furnace,” presented at the International Laser Sensing Symposium, Fukui, Japan, 6–8 September 1999.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Nicolas, J.-C.

Nikkari, J. J.

Oh, D. B.

Paige, M. E.

Pavone, F. S.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Peterson, B. W.

L. G. Blevins, B. W. Peterson, “Obtaining and interpreting near-infrared wavelength modulation absorption signals from hot fire gases: practical issues,” in Proceedings of Fall Technical Meeting, Combustion Institute/Eastern States Section (Combustion Institute, Pittsburgh, Pa., 1999), pp. 85–88.

Pitts, W. M.

L. G. Blevins, W. M. Pitts, “Carbon monoxide measurement using a near-infrared tunable diode laser,” in National Institute of Standards and Technology Annual Conference on Fire Research: Book of Abstracts. November 2–5, 1998, Gaithersburg, Md., K. A. Beall, ed. Natl. Inst. Stand. Technol. Spec. Publ. 21–22 (1998).

Pitz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

H. Pitz, T. Fernholz, C. Giesemann, V. Ebert, “Diode-laser-based in-situ CH4-detection for the surveillance of ignition processes in gas-fired power-plants,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 111–113.

T. Fernholz, H. Pitz, V. Ebert, “In-situ monitoring of water vapor and gas temperature in a coal fired power-plant using near-infrared diode lasers,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 77–79.

Pleban, K.-U.

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

V. Ebert, K.-U. Pleban, J. Wolfrum, “In-situ oxygen-monitoring using near-infrared diode lasers and wavelength modulation spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 206–209.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Rouillard, Y.

Sample, J. O.

Sanders, S. T.

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurement of CO, CO2, H2O and temperature using diode laser absorption spectroscopy,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

Sasada, H.

Schlosser, E.

E. Schlosser, T. Fernholz, H. Teichert, V. Ebert, “In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347–2359 (2002).
[CrossRef]

Schlosser, H. E.

H. E. Schlosser, B. A. Williams, R. S. Sheinson, J. W. Fleming, V. Ebert, “In-situ-determination of molecular oxygen concentration in full-scale fire suppression tests using TDLAS,” in Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2001), paper 164.

Schoenung, S. M.

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Selby, J. E. A.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Sheinson, R. S.

H. E. Schlosser, B. A. Williams, R. S. Sheinson, J. W. Fleming, V. Ebert, “In-situ-determination of molecular oxygen concentration in full-scale fire suppression tests using TDLAS,” in Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2001), paper 164.

Silver, J. A.

Sivco, D. L.

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Sonnenfroh, D. M.

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
[CrossRef]

D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
[CrossRef] [PubMed]

M. G. Allen, B. L. Upschulte, D. M. Sonnenfroh, W. J. Kessler, P. A. Mulhall, “Overview of diode laser measurements in large-scale test facilities,” paper AIAA-2000-2452, presented at the 21st Aerodynamic Measurement Technology and Ground Testing Conference, Denver, Colo., 19–22 June 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 2000–2452.

Spliethoff, H.

H. Spliethoff, “Verbrennung fester Brennstoffe zur Strom- und Wärmeerzeugung,” progress report, series 6, number 443 (VDI Verlag, Düsseldorf, Germany, 2000).

Stultz, S. C.

S. C. Stultz, J. B. Kitto, Steam: Its Generation and Use (Babcock Wilcox, Barberton, Ohio1992).

Tanoura, M.

K. Muta, M. Tanoura, H. Honda, “In-situ measurement of CO by tunable diode laser absorption spectroscopy in a large scale waste test furnace,” presented at the International Laser Sensing Symposium, Fukui, Japan, 6–8 September 1999.

Teichert, H.

E. Schlosser, T. Fernholz, H. Teichert, V. Ebert, “In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347–2359 (2002).
[CrossRef]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

Thomson, M. J.

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Tittel, F. K.

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Upschulte, B. L.

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
[CrossRef]

M. G. Allen, B. L. Upschulte, D. M. Sonnenfroh, W. J. Kessler, P. A. Mulhall, “Overview of diode laser measurements in large-scale test facilities,” paper AIAA-2000-2452, presented at the 21st Aerodynamic Measurement Technology and Ground Testing Conference, Denver, Colo., 19–22 June 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 2000–2452.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Vogel, P.

P. Vogel, V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
[CrossRef]

Wang, J.

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurement of CO, CO2, H2O and temperature using diode laser absorption spectroscopy,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Webber, M. E.

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurement of CO, CO2, H2O and temperature using diode laser absorption spectroscopy,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

Wehe, S.

Werle, P.

P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta A 52, 805–822 (1996).
[CrossRef]

Williams, B. A.

H. E. Schlosser, B. A. Williams, R. S. Sheinson, J. W. Fleming, V. Ebert, “In-situ-determination of molecular oxygen concentration in full-scale fire suppression tests using TDLAS,” in Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2001), paper 164.

Woldu, F.

Wolfrum, J.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

V. Ebert, K.-U. Pleban, J. Wolfrum, “In-situ oxygen-monitoring using near-infrared diode lasers and wavelength modulation spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 206–209.

Yamada, K.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Appl. Opt. (13)

R. T. Ku, J. O. Sample, E. David Hinkley, “Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system,” Appl. Opt. 14, 854–861 (1975).
[CrossRef] [PubMed]

R. K. Hanson, “Absorption spectroscopy in sooting flames using a tunable diode laser,” Appl. Opt. 19, 482–484 (1980).
[CrossRef] [PubMed]

J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, P. Hassanzadeh, “Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame,” Appl. Opt. 32, 6082–6089 (1993).
[CrossRef]

H. Sasada, K. Yamada, “Calibration lines of HCN in the 1.5 μm region,” Appl. Opt. 29, 3535–3547 (1990).
[CrossRef] [PubMed]

J.-C. Nicolas, A. N. Baranov, Y. Cuminal, Y. Rouillard, C. Alibert, “Tunable diode laser absorption spectroscopy of carbon monoxide around 2.35 μm,” Appl. Opt. 37, 7906–7911 (1998).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3 μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 μm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
[CrossRef] [PubMed]

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
[CrossRef]

J. J. Nikkari, J. M. Di Iorio, M. J. Thomson, “In situ combustion measurements of CO, H2O, and temperature with a 1.58-μm diode laser and two-tone frequency modulation,” Appl. Opt. 41, 446–452 (2002).
[CrossRef] [PubMed]

D. B. Oh, M. E. Paige, D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499–2501 (1998).
[CrossRef]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

Appl. Phys. B (3)

P. Vogel, V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
[CrossRef]

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 μm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser,” Appl. Phys. B 74, 95–99 (2001).
[CrossRef]

Combust. Sci. Technol. (1)

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldmann, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Proc. Combust. Inst. (3)

V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, “Simultaneous laser-based in-situ-detection of oxygen and water in a waste incinerator for active combustion control purposes,” Proc. Combust. Inst. 27, 1301–1308 (1998).

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000).
[CrossRef]

M. E. Webber, J. Wang, S. T. Sanders, D. S. Baer, R. K. Hanson, “In situ combustion measurement of CO, CO2, H2O and temperature using diode laser absorption spectroscopy,” Proc. Combust. Inst. 28, 407–413 (2000).
[CrossRef]

Spectrochim. Acta (1)

E. Schlosser, T. Fernholz, H. Teichert, V. Ebert, “In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347–2359 (2002).
[CrossRef]

Spectrochim. Acta A (1)

P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta A 52, 805–822 (1996).
[CrossRef]

Other (14)

P. H. Krupenie, “The band spectrum of carbon monoxide,” Natl. Stand. Ref. Data Ser.NBS 5 (U.S. Government Printing Office, Washington, D.C., 1966).

S. C. Stultz, J. B. Kitto, Steam: Its Generation and Use (Babcock Wilcox, Barberton, Ohio1992).

H. Spliethoff, “Verbrennung fester Brennstoffe zur Strom- und Wärmeerzeugung,” progress report, series 6, number 443 (VDI Verlag, Düsseldorf, Germany, 2000).

P. T. Mosley, J. O. W. Norris, D. E. Williams, eds., Techniques and Mechanisms in Gas Sensing (Adam Hilger, New York, 1991).

T. Fernholz, H. Pitz, V. Ebert, “In-situ monitoring of water vapor and gas temperature in a coal fired power-plant using near-infrared diode lasers,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 77–79.

V. Ebert, K.-U. Pleban, J. Wolfrum, “In-situ oxygen-monitoring using near-infrared diode lasers and wavelength modulation spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 206–209.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peret, J. M. Flaud, J. Schroeder, A. McCann are preparing a manuscript titled “HITEMP, the high-temperature molecular spectroscopic database.”

Further information on HITRAN and HITEMP available from www.hitran.com .

H. Pitz, T. Fernholz, C. Giesemann, V. Ebert, “Diode-laser-based in-situ CH4-detection for the surveillance of ignition processes in gas-fired power-plants,” in Laser Applications to Chemical and Environmental Analysis, Vol. 36 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 111–113.

L. G. Blevins, W. M. Pitts, “Carbon monoxide measurement using a near-infrared tunable diode laser,” in National Institute of Standards and Technology Annual Conference on Fire Research: Book of Abstracts. November 2–5, 1998, Gaithersburg, Md., K. A. Beall, ed. Natl. Inst. Stand. Technol. Spec. Publ. 21–22 (1998).

L. G. Blevins, B. W. Peterson, “Obtaining and interpreting near-infrared wavelength modulation absorption signals from hot fire gases: practical issues,” in Proceedings of Fall Technical Meeting, Combustion Institute/Eastern States Section (Combustion Institute, Pittsburgh, Pa., 1999), pp. 85–88.

M. G. Allen, B. L. Upschulte, D. M. Sonnenfroh, W. J. Kessler, P. A. Mulhall, “Overview of diode laser measurements in large-scale test facilities,” paper AIAA-2000-2452, presented at the 21st Aerodynamic Measurement Technology and Ground Testing Conference, Denver, Colo., 19–22 June 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 2000–2452.

K. Muta, M. Tanoura, H. Honda, “In-situ measurement of CO by tunable diode laser absorption spectroscopy in a large scale waste test furnace,” presented at the International Laser Sensing Symposium, Fukui, Japan, 6–8 September 1999.

H. E. Schlosser, B. A. Williams, R. S. Sheinson, J. W. Fleming, V. Ebert, “In-situ-determination of molecular oxygen concentration in full-scale fire suppression tests using TDLAS,” in Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2001), paper 164.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Line-strength spectra of CO, CO2, and H2O near 1560 nm taken from the Hitran’96/Hitemp database. The hatched regions indicate the telecommunication C band; the vertical line at 1560 nm marks the region of CO line selected for the present study.

Fig. 2
Fig. 2

Absorption spectrum for 0.5% CO, 10% H2O, and 10% CO2 at T = 1450 K, p = 1 atm, and L = 13 m calculated with Hitran’96/Hitemp data and Voigt line shapes. The R(24) transition seems to be best suited for in situ CO detection at 1450 K. The hatched area indicates the wavelength interval accessible by current tuning of the DFB diode laser used in this study.

Fig. 3
Fig. 3

Left, static temperature- and current-induced wavelength tuning of the 1560-nm DFB laser (Mitsubishi; 0.40 cm-1/K, 0.0242 cm-1/mA). Right, static temperature-induced wavelength tuning of the 813-nm Fabry-Perot laser (Sharp). Sections with continuous tuning are interrupted by mode hops. The temperature-tuning rate within a mode was 0.995 cm-1/K. The static current-tuning rate within a mode was 0.112 cm-1/mA.

Fig. 4
Fig. 4

Dynamic tuning behavior of the 1560-nm DFB diode laser under triangular modulation for several modulation frequencies current (only the up scan is shown) at constant modulation amplitude. The tuning rate is normalized with respect to the static current-tuning coefficient (0.0242 cm-1/mA). Nonlinear tuning behavior over the wavelength scan is evident, as well is a narrowing of the wavelength span with increasing modulation frequency.

Fig. 5
Fig. 5

Schematics of the experimental setup during in situ CO/H2O measurements at a coal-fired power plant. Det.’s, detectors; Sph., spherical.

Fig. 6
Fig. 6

Top, dc-coupled in situ detector signal over a high number of wavelength scans (each sharp spike corresponds to an up and a down scan). The amplitude modulation of the signal is modified by strong transmission losses along the absorption path. In addition, the detector signal is increased by thermal background emission (E). Bottom, transmission levels found over a longer time period, indicating an average in situ transmission of the measurement path (vertical line) of 8 × 10-4.

Fig. 7
Fig. 7

Time series of the transmission [Tr(t)] through the combustion chamber (left axis) and ratio of the detected thermal background emission behind the filters (1.1 × 10-5 W ± 10%) to the transmitted laser power (right axis). The interruption at 5:00 PM is due to window cleaning and realignment. (Lighter trace, 30-s average; darker trace, 30-min moving average.) Here and below, [hh:mm] indicates hours and minutes.

Fig. 8
Fig. 8

Typical in situ line shapes (30-s average) of the CO R(24) line at 1559.5 nm and H2O at 813 nm measured at a coal-fired power plant. The scans are transmission and emission corrected and normalized to the initial laser intensity. Multiline Voigt fits were used for concentration determination. A detectivity of 10-3 to 10-4 O.D. can be derived from the residual.

Fig. 9
Fig. 9

Time series of the line area ratio of H2O lines A and C in Fig. 8 compared with temperature data from the radiative pyrometer taken looking into the combustion chamber.

Fig. 10
Fig. 10

Time history of the in situ water-vapor concentration (30-s average and 30-min moving average). The interruption at 5:00 PM is due to window cleaning and realignment.

Fig. 11
Fig. 11

Comparison of the laser-based in situ CO concentration measurement (left axis) with extractive CO detection by an NDIR sensor (right axis). The NDIR sampling point was located 100 m downstream from the combustor.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Iλ=I0λexp-STgλ-λ0NLTrt+Et.

Metrics