Abstract

AX(0,1) excitation is a promising new approach for NO laser-induced fluorescence (LIF) diagnostics at elevated pressures and temperatures. We present what to our knowledge are the first detailed spectroscopic investigations within this excitation band using wavelength-resolved LIF measurements in premixed methane/air flames at pressures between 1 and 60 bar and a range of fuel/air ratios. Interference from O2 LIF is a significant problem in lean flames for NO LIF measurements, and pressure broadening and quenching lead to increased interference with increased pressure. Three different excitation schemes are identified that maximize NO/O2 LIF signal ratios, thereby minimizing the O2 interference. The NO LIF signal strength, interference by hot molecular oxygen, and temperature dependence of the three schemes are investigated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  2. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
    [CrossRef]
  3. K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, New York, 2002).
  4. T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. ter Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
    [CrossRef]
  5. C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), Vol. 28, pp. 287–293.
    [CrossRef]
  6. J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” SAE 980147 (Society of Automotive Engineers, Warrendale, Pa., 1998).
  7. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
    [CrossRef]
  8. W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
    [CrossRef]
  9. F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
    [CrossRef]
  10. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef] [PubMed]
  11. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
    [CrossRef] [PubMed]
  12. W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of seeded NO,” Appl. Opt. 40, 748–756 (2000).
    [CrossRef]
  13. J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
    [CrossRef]
  14. W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0,0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
    [CrossRef] [PubMed]
  15. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, continuing in their series, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes.”
  16. T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in high-pressure flames with A–X(0,0), (0,1), and (0,2) excitation,” presented at the 40th Aerospace Sciences Meeting, Reno, Nev.14–17 January 2002, paper AIAA-2002-0399.
  17. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,1) excitation,” presented at the Western States Section/The Combustion Institute, 2001Spring Meeting, Oakland, Calif.
  18. F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
    [CrossRef]
  19. C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Measurements of ultraviolet absorption spectra of shock heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
    [CrossRef]
  20. W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
    [CrossRef]
  21. C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. (to be published).
  22. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I: Spectra of Diatomic Molecules (Krieger, Malabar, Fla., 1950).
  23. M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
    [CrossRef]
  24. M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
    [CrossRef]
  25. A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
  26. F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” VDI Flammentag Dresden, VDI Berichte 1492 (ISBN 3-18-091492-0), 269–274 (1999).
  27. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1996), Vol. 26, pp. 2597–2601).
  28. F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
    [CrossRef]
  29. P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A–X(0,1) excitation,” SAE 2001-01-1926 (Society of Automotive Engineers, Warrendale, Pa., 2001).
    [CrossRef]
  30. M.-S. Chou, A. M. Dean, D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970 (1983).
    [CrossRef]
  31. P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 1377–1384.
  32. L. Pillier, C. Moreau, X. Mercier, J. F. Pauwels, P. Desgroux, “Quantification of stable minor species in confined flames by cavity ring-down spectroscopy: application to NO,” Appl. Phys. B 74, 427–434 (2002).
    [CrossRef]
  33. H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989), paper 3.3.
  34. C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) LIF: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
    [CrossRef]
  35. L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2∑+ - X2Π) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
    [CrossRef]
  36. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2∑+,” Appl. Phys. B 57, 249–259 (1993).
    [CrossRef]
  37. P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2∑+ (v′ = 0) electronic quencing cross-section,” Sandia Rep. SAND94-8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
    [CrossRef]
  38. P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
    [CrossRef]

2002 (4)

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Measurements of ultraviolet absorption spectra of shock heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

L. Pillier, C. Moreau, X. Mercier, J. F. Pauwels, P. Desgroux, “Quantification of stable minor species in confined flames by cavity ring-down spectroscopy: application to NO,” Appl. Phys. B 74, 427–434 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0,0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

2001 (1)

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

2000 (1)

1999 (1)

1997 (2)

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. ter Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

1995 (2)

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

1994 (3)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

1993 (2)

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

1986 (1)

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2∑+ - X2Π) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

1985 (1)

1983 (1)

M.-S. Chou, A. M. Dean, D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970 (1983).
[CrossRef]

Berg, P. A.

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 1377–1384.

Bessler, W. G.

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0,0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of seeded NO,” Appl. Opt. 40, 748–756 (2000).
[CrossRef]

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in high-pressure flames with A–X(0,0), (0,1), and (0,2) excitation,” presented at the 40th Aerospace Sciences Meeting, Reno, Nev.14–17 January 2002, paper AIAA-2002-0399.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, continuing in their series, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes.”

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,1) excitation,” presented at the Western States Section/The Combustion Institute, 2001Spring Meeting, Oakland, Calif.

Bräumer, A.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

Brugmann, T. M.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. ter Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Canaan, R. E.

J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” SAE 980147 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Carter, C. D.

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2∑+ (v′ = 0) electronic quencing cross-section,” Sandia Rep. SAND94-8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
[CrossRef]

Chou, M.-S.

M.-S. Chou, A. M. Dean, D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970 (1983).
[CrossRef]

Cooper, C. S.

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), Vol. 28, pp. 287–293.
[CrossRef]

Cowles, L. M.

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2∑+ - X2Π) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

Crosley, D. R.

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 1377–1384.

Dam, N.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. ter Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Davidson, D. F.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Measurements of ultraviolet absorption spectra of shock heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. (to be published).

Dean, A. M.

M.-S. Chou, A. M. Dean, D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970 (1983).
[CrossRef]

Dec, J. E.

J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” SAE 980147 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Deschamps, B.

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A–X(0,1) excitation,” SAE 2001-01-1926 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Desgroux, P.

L. Pillier, C. Moreau, X. Mercier, J. F. Pauwels, P. Desgroux, “Quantification of stable minor species in confined flames by cavity ring-down spectroscopy: application to NO,” Appl. Phys. B 74, 427–434 (2002).
[CrossRef]

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A–X(0,1) excitation,” SAE 2001-01-1926 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

DiRosa, M. D.

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

Drewes, V.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1996), Vol. 26, pp. 2597–2601).

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2∑+ (v′ = 0) electronic quencing cross-section,” Sandia Rep. SAND94-8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
[CrossRef]

Eberius, H.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989), paper 3.3.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

Furlanetto, M. R.

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2∑+ (v′ = 0) electronic quencing cross-section,” Sandia Rep. SAND94-8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
[CrossRef]

Gg, H.

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” VDI Flammentag Dresden, VDI Berichte 1492 (ISBN 3-18-091492-0), 269–274 (1999).

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2∑+ (v′ = 0) electronic quencing cross-section,” Sandia Rep. SAND94-8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
[CrossRef]

Hanson, R. K.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Measurements of ultraviolet absorption spectra of shock heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0,0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. (to be published).

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,1) excitation,” presented at the Western States Section/The Combustion Institute, 2001Spring Meeting, Oakland, Calif.

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in high-pressure flames with A–X(0,0), (0,1), and (0,2) excitation,” presented at the 40th Aerospace Sciences Meeting, Reno, Nev.14–17 January 2002, paper AIAA-2002-0399.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, continuing in their series, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes.”

Hartmann, M.

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Heinze, J.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) LIF: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I: Spectra of Diatomic Molecules (Krieger, Malabar, Fla., 1950).

Hildenbrand, F.

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of seeded NO,” Appl. Opt. 40, 748–756 (2000).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” VDI Flammentag Dresden, VDI Berichte 1492 (ISBN 3-18-091492-0), 269–274 (1999).

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Hofmann, M.

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

Höfner, G.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989), paper 3.3.

Jamette, P.

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A–X(0,1) excitation,” SAE 2001-01-1926 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Jander, H.

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” VDI Flammentag Dresden, VDI Berichte 1492 (ISBN 3-18-091492-0), 269–274 (1999).

Jeffries, J. B.

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0,0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Measurements of ultraviolet absorption spectra of shock heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in high-pressure flames with A–X(0,0), (0,1), and (0,2) excitation,” presented at the 40th Aerospace Sciences Meeting, Reno, Nev.14–17 January 2002, paper AIAA-2002-0399.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, continuing in their series, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes.”

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 1377–1384.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,1) excitation,” presented at the Western States Section/The Combustion Institute, 2001Spring Meeting, Oakland, Calif.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. (to be published).

K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, New York, 2002).

Just, T.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989), paper 3.3.

Keller, F.

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

Kick, T.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989), paper 3.3.

Koch, J. D.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Measurements of ultraviolet absorption spectra of shock heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. (to be published).

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, New York, 2002).

König, G.

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Kychakoff, G.

Laurendeau, N. M.

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), Vol. 28, pp. 287–293.
[CrossRef]

Lee, T.

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0,0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,1) excitation,” presented at the Western States Section/The Combustion Institute, 2001Spring Meeting, Oakland, Calif.

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in high-pressure flames with A–X(0,0), (0,1), and (0,2) excitation,” presented at the 40th Aerospace Sciences Meeting, Reno, Nev.14–17 January 2002, paper AIAA-2002-0399.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, continuing in their series, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes.”

Lutz, W.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989), paper 3.3.

Maly, R.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1996), Vol. 26, pp. 2597–2601).

Maly, R. R.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

McMillin, B. K.

Meerts, W. L.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. ter Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Meier, U.

Meier, U. E.

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

Mercier, X.

L. Pillier, C. Moreau, X. Mercier, J. F. Pauwels, P. Desgroux, “Quantification of stable minor species in confined flames by cavity ring-down spectroscopy: application to NO,” Appl. Phys. B 74, 427–434 (2002).
[CrossRef]

Moreau, C.

L. Pillier, C. Moreau, X. Mercier, J. F. Pauwels, P. Desgroux, “Quantification of stable minor species in confined flames by cavity ring-down spectroscopy: application to NO,” Appl. Phys. B 74, 427–434 (2002).
[CrossRef]

Palmer, J. L.

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

Paul, P. H.

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2∑+ (v′ = 0) electronic quencing cross-section,” Sandia Rep. SAND94-8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
[CrossRef]

Pauwels, J. F.

L. Pillier, C. Moreau, X. Mercier, J. F. Pauwels, P. Desgroux, “Quantification of stable minor species in confined flames by cavity ring-down spectroscopy: application to NO,” Appl. Phys. B 74, 427–434 (2002).
[CrossRef]

Pillier, L.

L. Pillier, C. Moreau, X. Mercier, J. F. Pauwels, P. Desgroux, “Quantification of stable minor species in confined flames by cavity ring-down spectroscopy: application to NO,” Appl. Phys. B 74, 427–434 (2002).
[CrossRef]

Piper, L. G.

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2∑+ - X2Π) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

Ricordeau, V.

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A–X(0,1) excitation,” SAE 2001-01-1926 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Schenk, M.

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Schulz, C.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Measurements of ultraviolet absorption spectra of shock heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0,0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of seeded NO,” Appl. Opt. 40, 748–756 (2000).
[CrossRef]

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) LIF: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in high-pressure flames with A–X(0,0), (0,1), and (0,2) excitation,” presented at the 40th Aerospace Sciences Meeting, Reno, Nev.14–17 January 2002, paper AIAA-2002-0399.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, continuing in their series, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes.”

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1996), Vol. 26, pp. 2597–2601).

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” VDI Flammentag Dresden, VDI Berichte 1492 (ISBN 3-18-091492-0), 269–274 (1999).

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,1) excitation,” presented at the Western States Section/The Combustion Institute, 2001Spring Meeting, Oakland, Calif.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. (to be published).

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Seitzman, J. M.

Shin, D.-I.

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0,0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in high-pressure flames with A–X(0,0), (0,1), and (0,2) excitation,” presented at the 40th Aerospace Sciences Meeting, Reno, Nev.14–17 January 2002, paper AIAA-2002-0399.

Sick, V.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) LIF: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1996), Vol. 26, pp. 2597–2601).

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” VDI Flammentag Dresden, VDI Berichte 1492 (ISBN 3-18-091492-0), 269–274 (1999).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

Smith, G. P.

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 1377–1384.

Stern, D.

M.-S. Chou, A. M. Dean, D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970 (1983).
[CrossRef]

Stoffels, G. G. M.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. ter Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Stricker, W.

ter Meulen, J. J.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. ter Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2∑+ (v′ = 0) electronic quencing cross-section,” Sandia Rep. SAND94-8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
[CrossRef]

Vyrodov, A. O.

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

Wagner, E.

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

Wolfrum, J.

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. (to be published).

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1996), Vol. 26, pp. 2597–2601).

Zahn, M.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1996), Vol. 26, pp. 2597–2601).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (5)

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. ter Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2∑+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

L. Pillier, C. Moreau, X. Mercier, J. F. Pauwels, P. Desgroux, “Quantification of stable minor species in confined flames by cavity ring-down spectroscopy: application to NO,” Appl. Phys. B 74, 427–434 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Measurements of ultraviolet absorption spectra of shock heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

J. Chem. Phys. (2)

M.-S. Chou, A. M. Dean, D. Stern, “Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames,” J. Chem. Phys. 78, 5962–5970 (1983).
[CrossRef]

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2∑+ - X2Π) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

J. Mol. Spectrosc. (1)

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A–X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

Opt. Lett. (1)

Prog. Energy Combust. Sci. (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Shock Waves (1)

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

Other (19)

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2∑+ (v′ = 0) electronic quencing cross-section,” Sandia Rep. SAND94-8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2002), Vol. 28, pp. 287–293.
[CrossRef]

J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” SAE 980147 (Society of Automotive Engineers, Warrendale, Pa., 1998).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, New York, 2002).

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989), paper 3.3.

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

P. A. Berg, G. P. Smith, J. B. Jeffries, D. R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 1377–1384.

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. (to be published).

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I: Spectra of Diatomic Molecules (Krieger, Malabar, Fla., 1950).

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” VDI Flammentag Dresden, VDI Berichte 1492 (ISBN 3-18-091492-0), 269–274 (1999).

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1996), Vol. 26, pp. 2597–2601).

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A–X(0,1) excitation,” SAE 2001-01-1926 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, continuing in their series, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes.”

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in high-pressure flames with A–X(0,0), (0,1), and (0,2) excitation,” presented at the 40th Aerospace Sciences Meeting, Reno, Nev.14–17 January 2002, paper AIAA-2002-0399.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,1) excitation,” presented at the Western States Section/The Combustion Institute, 2001Spring Meeting, Oakland, Calif.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental arrangement.

Fig. 2
Fig. 2

O2 and NO LIF excitation spectra at 10 and 60 bar over a long spectral range within the NO AX(0,1) band. Candidate transitions with maximum NO/O2 signal ratio are marked. 10 bar: NO LIF and O2 LIF measured in a ϕ = 0.9 methane/air, 400 ppm NO-doped flame. 60 bar: measured O2 LIF in a flame without NO doping and simulated NO LIF for a similar flame. The NO and O2 LIF intensities from both panels are comparable on a relative scale.

Fig. 3
Fig. 3

Excitation-emission charts for excitation wavelengths around the three candidate transitions for all investigated pressures and equivalence ratios. The LIF signal intensity is gray-scale coded, and all values above an arbitrary threshold (corresponding to the NO (0,2) emission of the Jamette candidate at p = 40 bar, ϕ = 0.83) are colored white. Excitation wavelength increases from top to bottom starting at 235.539, 235.859 and 236.209 nm for all A, B, and Jamette panels, respectively, and covering a range of 0.03, 0.045, and 0.06 nm for all 1 + 5, 10 + 20, and 40 + 60 bar panels, respectively. Intense Rayleigh scattering dominates NO and O2 signals at 236 nm.

Fig. 4
Fig. 4

Fluorescence excitation spectra for the three candidate transitions for the lean, ϕ = 0.93 flames. The NO LIF signal is measured in the AX(0,3) emission band around 258 nm.

Fig. 5
Fig. 5

Fluorescence emission spectra for the three candidate transitions for the p = 40 bar, ϕ = 0.83 flame. At ∼235 nm intense Rayleigh scattering adds to the NO (0,1) LIF signal.

Fig. 6
Fig. 6

Fluorescence emission spectra for the Jamette transition for the p = 5, 20 and 60 bar, ϕ = 0.83, 0.93, 1.03, and 1.13 flames. At ∼235 nm intense Rayleigh scattering adds to the NO (0,1) LIF signal.

Fig. 7
Fig. 7

Example of the nonlinear least-squares fit of simulated NO, O2, and Rayleigh emission spectra (represented as Voigt line shapes) and a broadband background signal for the B candidate line at p = 60 bar, ϕ = 0.83. See text for details.

Fig. 8
Fig. 8

Total NO fluorescence signal between 220 and 230 nm for the candidate transitions. The excitation wavelength is held constant with pressure corresponding to the NO signal peak at 1 bar. The scale is comparable for all panels of Figs. 8 and 9.

Fig. 9
Fig. 9

Total NO fluorescence signal between 220 and 230 nm for the candidate transitions. The excitation wavelength is chosen for maximum NO/O2 signal ratio for each individual pressure. The scale is comparable for all panels of Figs. 8 and 9.

Fig. 10
Fig. 10

O2 LIF contribution to the total NO + O2 LIF signal for blue- and red-shifted detection. The excitation wavelength is held constant with pressure corresponding to the NO signal peak at 1 bar.

Fig. 11
Fig. 11

O2 LIF contribution to the total NO + O2 LIF signal for blue- and red-shifted detection. The excitation wavelength is chosen for maximum NO/O2 signal ratio for each individual pressure.

Fig. 12
Fig. 12

Broadband background signal. The scales for the different air/fuel ratios are identical.

Fig. 13
Fig. 13

Ratio of NO LIF emission of ∼300 ppm NO in the flame gases (for details see text) over total emission in the 240–265-nm detection bandpass. The excitation wavelength is chosen for maximum NO/O2 signal ratio for each individual pressure.

Fig. 14
Fig. 14

Temperature dependence of the NO LIF signal when number density is evaluated. Simulation for p = 10 bar.

Fig. 15
Fig. 15

Temperature dependence of the NO LIF signal when mole fraction is evaluated. Simulation for p = 10 bar.

Tables (1)

Tables Icon

Table 1 Investigated Transitions in the NO A-X(0,1) Band

Metrics