Abstract

Lenslet arrays with a low fill factor can improve the viewing angle in integral imaging. However, the viewing resolution is degraded by low fill-factor lenslets because the spatial sampling rate of the ray information is reduced. We show that both the viewing resolution and the viewing angle of integral imaging can be improved by adopting a moving array-lenslet technique.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La Photographie Integrale,” Comptes-Rendus Academie des Sciences 146, 446–451 (1908).
  2. H. E. Ives, “Optical properties of a Lippmann lenticulated sheet,” J. Opt. Soc. Am. 21, 171–176 (1931).
    [CrossRef]
  3. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58, 71–76 (1968).
    [CrossRef]
  4. T. Okoshi, “Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays,” Appl. Opt. 10, 2284–2291 (1971).
    [CrossRef] [PubMed]
  5. B. Javidi, F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer-Verlag, Berlin, 2002).
  6. F. Okano, H. Hoshino, J. Arai, I. Yuma, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [CrossRef] [PubMed]
  7. J.-H. Park, S.-W. Min, S. Jung, B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
    [CrossRef]
  8. F. Okano, H. Hoshino, J. Arai, I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
    [CrossRef]
  9. J. Arai, F. Okano, H. Hoshino, I. Yuma, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
    [CrossRef]
  10. H. Hoshino, F. Okano, H. Isono, I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
    [CrossRef]
  11. J.-S. Jang, B. Javidi, “Improved viewing resolution of three-dimensional integral imaging with nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [CrossRef]
  12. N. A. Valyus, Stereoscopy (Focal Press, New York, 1966).
  13. A. Kalai, M. Siegel, “Improved rendering of parallax panoramagrams for a time-multiplexed autostereoscopic display,” in Stereoscopic Display and Virtual Reality Systems V, Proc. SPIE3295A, 211–217 (1998).
    [CrossRef]
  14. R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20–22 (1967).
    [CrossRef]
  15. J.-S. Jang, B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
    [CrossRef]
  16. T. J. Andrews, L. E. White, D. Binder, D. Purves, “Temporal events in cyclopean vision,” Proc. Natl. Acad. Sci. USA 93, 3689–3692 (1996).
    [CrossRef] [PubMed]

2002 (2)

2001 (1)

1999 (1)

F. Okano, H. Hoshino, J. Arai, I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

1998 (2)

1997 (1)

1996 (1)

T. J. Andrews, L. E. White, D. Binder, D. Purves, “Temporal events in cyclopean vision,” Proc. Natl. Acad. Sci. USA 93, 3689–3692 (1996).
[CrossRef] [PubMed]

1971 (1)

1968 (1)

1967 (1)

R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20–22 (1967).
[CrossRef]

1931 (1)

1908 (1)

G. Lippmann, “La Photographie Integrale,” Comptes-Rendus Academie des Sciences 146, 446–451 (1908).

Andrews, T. J.

T. J. Andrews, L. E. White, D. Binder, D. Purves, “Temporal events in cyclopean vision,” Proc. Natl. Acad. Sci. USA 93, 3689–3692 (1996).
[CrossRef] [PubMed]

Arai, J.

Binder, D.

T. J. Andrews, L. E. White, D. Binder, D. Purves, “Temporal events in cyclopean vision,” Proc. Natl. Acad. Sci. USA 93, 3689–3692 (1996).
[CrossRef] [PubMed]

Burckhardt, C. B.

Hoshino, H.

Isono, H.

Ives, H. E.

Jang, J.-S.

Javidi, B.

Jung, S.

Kalai, A.

A. Kalai, M. Siegel, “Improved rendering of parallax panoramagrams for a time-multiplexed autostereoscopic display,” in Stereoscopic Display and Virtual Reality Systems V, Proc. SPIE3295A, 211–217 (1998).
[CrossRef]

Lee, B.

Lippmann, G.

G. Lippmann, “La Photographie Integrale,” Comptes-Rendus Academie des Sciences 146, 446–451 (1908).

Min, S.-W.

Okano, F.

Okoshi, T.

Park, J.-H.

Pole, R. V.

R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20–22 (1967).
[CrossRef]

Purves, D.

T. J. Andrews, L. E. White, D. Binder, D. Purves, “Temporal events in cyclopean vision,” Proc. Natl. Acad. Sci. USA 93, 3689–3692 (1996).
[CrossRef] [PubMed]

Siegel, M.

A. Kalai, M. Siegel, “Improved rendering of parallax panoramagrams for a time-multiplexed autostereoscopic display,” in Stereoscopic Display and Virtual Reality Systems V, Proc. SPIE3295A, 211–217 (1998).
[CrossRef]

Valyus, N. A.

N. A. Valyus, Stereoscopy (Focal Press, New York, 1966).

White, L. E.

T. J. Andrews, L. E. White, D. Binder, D. Purves, “Temporal events in cyclopean vision,” Proc. Natl. Acad. Sci. USA 93, 3689–3692 (1996).
[CrossRef] [PubMed]

Yuma, I.

Yuyama, I.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20–22 (1967).
[CrossRef]

Comptes-Rendus Academie des Sciences (1)

G. Lippmann, “La Photographie Integrale,” Comptes-Rendus Academie des Sciences 146, 446–451 (1908).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

F. Okano, H. Hoshino, J. Arai, I. Yuma, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (1)

T. J. Andrews, L. E. White, D. Binder, D. Purves, “Temporal events in cyclopean vision,” Proc. Natl. Acad. Sci. USA 93, 3689–3692 (1996).
[CrossRef] [PubMed]

Other (3)

N. A. Valyus, Stereoscopy (Focal Press, New York, 1966).

A. Kalai, M. Siegel, “Improved rendering of parallax panoramagrams for a time-multiplexed autostereoscopic display,” in Stereoscopic Display and Virtual Reality Systems V, Proc. SPIE3295A, 211–217 (1998).
[CrossRef]

B. Javidi, F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer-Verlag, Berlin, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

II system.

Fig. 2
Fig. 2

3D image pickup and display with 2D devices in II.

Fig. 3
Fig. 3

Viewing angle and lenslet pitch.

Fig. 4
Fig. 4

Movement of lenslet arrays.

Fig. 5
Fig. 5

Experimental setup.

Fig. 6
Fig. 6

3D object used in the experiment.

Fig. 7
Fig. 7

Elemental images picked up: (a) Interference occurs when a high fill-factor lenslet is used, (b) no interference occurs when a low fill-factor lenslet array is used.

Fig. 8
Fig. 8

Experimental results for the 3D image reconstruction by use of high fill-factor lenslet arrays: (a) and (b) on-axis observation, (c) and (d) off-axis observation. In (b) and (d), the MALT was applied.

Fig. 9
Fig. 9

Experimental results for the 3D image reconstruction by use of low fill-factor lenslet arrays: (a) and (b) on-axis observation, (c) and (d) off-axis observation. In (b) and (d), the MALT was applied.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

βnyqL2p
ψ=2 arctanp2g,
V>maxpScos θ+Vmax,x, pSsin θ+Vmax,y,

Metrics