Abstract

Theoretical and experimental aspects of two-dimensional (2D) biomedical photoacoustic imaging have been investigated. A 2D Fourier-transform-based reconstruction algorithm that is significantly faster and produces fewer artifacts than simple radial backprojection methods is described. The image-reconstruction time for a 208 × 482 pixel image is ∼1 s. For the practical implementation of 2D photoacoustic imaging, a rectangular detector geometry was used to obtain an anisotropic detection sensitivity in order to reject out-of-plane signals, thereby permitting a tomographic image slice to be reconstructed. This approach was investigated by the numerical modeling of the broadband directional response of a rectangular detector and imaging of various spatially calibrated absorbing targets immersed in a turbid phantom. The experimental setup was based on a Q-switched Nd:YAG excitation laser source and a mechanically line-scanned Fabry-Perot polymer-film ultrasound sensor. For a 800 μm × 200 μm rectangular detector, the reconstructed image slice thickness was 0.8 mm up to a vertical distance of z = 3.5 mm from the detector, increasing thereafter to 2 mm at z = 10 mm. Horizontal and vertical spatial resolutions within the reconstructed slice were approximately 200 and 60 μm, respectively.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Hoelen, F. F. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  2. R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).
  3. P. C. Beard, “Photoacoustic imaging of blood vessel equivalent phantoms,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 54–62 (2002).
  4. A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
  5. J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
    [CrossRef] [PubMed]
  6. R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
    [PubMed]
  7. K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
    [CrossRef]
  8. O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
    [CrossRef]
  9. G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).
  10. The Grüneisen coefficient is given by Γ = Bβ/ρC, where B is the bulk modulus, β is the coefficient of volume thermal expansion, ρ is the density, and C the isobaric specific heat.
  11. L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, UK, 1987).
  12. K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
    [CrossRef] [PubMed]
  13. K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
    [CrossRef]
  14. P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
    [CrossRef]
  15. P. C. Beard, T. N. Mills, “2D line scan photoacoustic imaging of absorbers in a scattering tissue phantom,” in Biomedical Optoacoustics II, A. A. Oraevsky, ed., Proc. SPIE4256, 34–42 (2001).
  16. P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
    [CrossRef]

2002

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

2001

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

2000

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

1999

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

1998

1994

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

1983

O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
[CrossRef]

Aisen, A. M.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Andreev, V. G.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).

Au, G.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Beard, P. C.

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

P. C. Beard, “Photoacoustic imaging of blood vessel equivalent phantoms,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 54–62 (2002).

P. C. Beard, T. N. Mills, “2D line scan photoacoustic imaging of absorbers in a scattering tissue phantom,” in Biomedical Optoacoustics II, A. A. Oraevsky, ed., Proc. SPIE4256, 34–42 (2001).

Bebie, H.

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

Chen, Z.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

de Mul, F. F.

C. G. Hoelen, F. F. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).

Dekker, A.

Diebold, G. J.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

Frauchiger, D.

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

Frenz, M.

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

Gatalica, Z.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).

Henrichs, P. M.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).

Hoelen, C. G.

Hurrell, A.

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

Jacques, S. L.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Karabutov, A.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).

Khamapirad, T.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).

Kiser, W. L.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Koestli, K. P.

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

Kolkman, R. G.

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).

Kopecky, K. K.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Köstli, K. P.

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

Kruger, G. A.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Kruger, R. A.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, UK, 1987).

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, UK, 1987).

Mills, T. N.

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

P. C. Beard, T. N. Mills, “2D line scan photoacoustic imaging of absorbers in a scattering tissue phantom,” in Biomedical Optoacoustics II, A. A. Oraevsky, ed., Proc. SPIE4256, 34–42 (2001).

Nelson, J. S.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Niederhauser, J. J.

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).

Paltauf, G.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

Perennes, F.

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

Pilatou, M. C.

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).

Pongers, R.

Prahl, S. A.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Reinecke, D. R.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Ren, H.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Savateeva, E. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).

Schmidt-Kloiber, H.

Smith, S. W.

O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
[CrossRef]

Solomatin, S. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).

Steenbergen, W.

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).

Sun, T.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

Viator, J. A.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Von Ramm, O. T.

O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
[CrossRef]

Weber, H. P.

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

Acustica

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng.

O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

Lasers Surg. Med.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

Radiology

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Other

P. C. Beard, T. N. Mills, “2D line scan photoacoustic imaging of absorbers in a scattering tissue phantom,” in Biomedical Optoacoustics II, A. A. Oraevsky, ed., Proc. SPIE4256, 34–42 (2001).

The Grüneisen coefficient is given by Γ = Bβ/ρC, where B is the bulk modulus, β is the coefficient of volume thermal expansion, ρ is the density, and C the isobaric specific heat.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, UK, 1987).

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).

P. C. Beard, “Photoacoustic imaging of blood vessel equivalent phantoms,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 54–62 (2002).

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics