Abstract

Theoretical and experimental aspects of two-dimensional (2D) biomedical photoacoustic imaging have been investigated. A 2D Fourier-transform-based reconstruction algorithm that is significantly faster and produces fewer artifacts than simple radial backprojection methods is described. The image-reconstruction time for a 208 × 482 pixel image is ∼1 s. For the practical implementation of 2D photoacoustic imaging, a rectangular detector geometry was used to obtain an anisotropic detection sensitivity in order to reject out-of-plane signals, thereby permitting a tomographic image slice to be reconstructed. This approach was investigated by the numerical modeling of the broadband directional response of a rectangular detector and imaging of various spatially calibrated absorbing targets immersed in a turbid phantom. The experimental setup was based on a Q-switched Nd:YAG excitation laser source and a mechanically line-scanned Fabry-Perot polymer-film ultrasound sensor. For a 800 μm × 200 μm rectangular detector, the reconstructed image slice thickness was 0.8 mm up to a vertical distance of z = 3.5 mm from the detector, increasing thereafter to 2 mm at z = 10 mm. Horizontal and vertical spatial resolutions within the reconstructed slice were approximately 200 and 60 μm, respectively.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Hoelen, F. F. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  2. R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).
    [CrossRef]
  3. P. C. Beard, “Photoacoustic imaging of blood vessel equivalent phantoms,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 54–62 (2002).
    [CrossRef]
  4. A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
    [CrossRef]
  5. J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
    [CrossRef] [PubMed]
  6. R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
    [PubMed]
  7. K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
    [CrossRef]
  8. O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
    [CrossRef]
  9. G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).
  10. The Grüneisen coefficient is given by Γ = Bβ/ρC, where B is the bulk modulus, β is the coefficient of volume thermal expansion, ρ is the density, and C the isobaric specific heat.
  11. L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, UK, 1987).
  12. K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
    [CrossRef] [PubMed]
  13. K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
    [CrossRef]
  14. P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
    [CrossRef]
  15. P. C. Beard, T. N. Mills, “2D line scan photoacoustic imaging of absorbers in a scattering tissue phantom,” in Biomedical Optoacoustics II, A. A. Oraevsky, ed., Proc. SPIE4256, 34–42 (2001).
    [CrossRef]
  16. P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
    [CrossRef]

2002 (1)

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

2001 (3)

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

2000 (1)

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

1999 (2)

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

1998 (1)

1994 (1)

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

1983 (1)

O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
[CrossRef]

Aisen, A. M.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Andreev, V. G.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Au, G.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Beard, P. C.

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

P. C. Beard, T. N. Mills, “2D line scan photoacoustic imaging of absorbers in a scattering tissue phantom,” in Biomedical Optoacoustics II, A. A. Oraevsky, ed., Proc. SPIE4256, 34–42 (2001).
[CrossRef]

P. C. Beard, “Photoacoustic imaging of blood vessel equivalent phantoms,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 54–62 (2002).
[CrossRef]

Bebie, H.

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

Chen, Z.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

de Mul, F. F.

C. G. Hoelen, F. F. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).
[CrossRef]

Dekker, A.

Diebold, G. J.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

Frauchiger, D.

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

Frenz, M.

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

Gatalica, Z.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Henrichs, P. M.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Hoelen, C. G.

Hurrell, A.

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

Jacques, S. L.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Karabutov, A.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Khamapirad, T.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Kiser, W. L.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Koestli, K. P.

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

Kolkman, R. G.

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).
[CrossRef]

Kopecky, K. K.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Köstli, K. P.

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

Kruger, G. A.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Kruger, R. A.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, UK, 1987).

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, UK, 1987).

Mills, T. N.

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

P. C. Beard, T. N. Mills, “2D line scan photoacoustic imaging of absorbers in a scattering tissue phantom,” in Biomedical Optoacoustics II, A. A. Oraevsky, ed., Proc. SPIE4256, 34–42 (2001).
[CrossRef]

Nelson, J. S.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Niederhauser, J. J.

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Paltauf, G.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

Perennes, F.

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

Pilatou, M. C.

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).
[CrossRef]

Pongers, R.

Prahl, S. A.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Reinecke, D. R.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Ren, H.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Savateeva, E. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Schmidt-Kloiber, H.

Smith, S. W.

O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
[CrossRef]

Solomatin, S. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
[CrossRef]

Steenbergen, W.

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).
[CrossRef]

Sun, T.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

Viator, J. A.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Von Ramm, O. T.

O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
[CrossRef]

Weber, H. P.

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40, 3800–3809 (2001).
[CrossRef]

Acustica (1)

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

K. P. Koestli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

O. T. Von Ramm, S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed. Eng. BME-30, 439–451 (1983).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

P. C. Beard, F. Perennes, T. N. Mills, “Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999).
[CrossRef]

P. C. Beard, A. Hurrell, T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for the measurement of ultrasound fields for use in the range 1–30 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256–264 (2000).
[CrossRef]

Lasers Surg. Med. (1)

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, J. S. Nelson, “Clinical testing of a photoacoustic probe for port wine stain depth determination,” Lasers Surg. Med. 30, 141–148 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

K. P. Köstli, M. Frenz, H. Bebie, H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872 (2001).
[CrossRef] [PubMed]

Radiology (1)

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).
[PubMed]

Other (6)

R. G. Kolkman, M. C. Pilatou, W. Steenbergen, F. F. de Mul, “Photoacoustic monitoring and imaging of blood vessels in tissue,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 76–80 (2002).
[CrossRef]

P. C. Beard, “Photoacoustic imaging of blood vessel equivalent phantoms,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 54–62 (2002).
[CrossRef]

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–94 (2002).
[CrossRef]

P. C. Beard, T. N. Mills, “2D line scan photoacoustic imaging of absorbers in a scattering tissue phantom,” in Biomedical Optoacoustics II, A. A. Oraevsky, ed., Proc. SPIE4256, 34–42 (2001).
[CrossRef]

The Grüneisen coefficient is given by Γ = Bβ/ρC, where B is the bulk modulus, β is the coefficient of volume thermal expansion, ρ is the density, and C the isobaric specific heat.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, UK, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry for 2D image reconstruction.

Fig. 2
Fig. 2

Geometry of the detection slice defined by a line array of rectangular detector elements of length L and width w. The point sources that intersect the detection slice are termed in-plane sources, and the remaining sources are denoted out-of-plane sources.

Fig. 3
Fig. 3

Simulation of directional response of a single rectangular detector element that is due to a disk-shaped source of diameter 200 μm and thickness 20 μm aligned parallel to the xy plane. The length dimension (L = 800 μm) of the detector is aligned parallel to the y axis, and the width dimension (w = 100 μm) is aligned parallel to the x axis. The thickness of the detector was 75 μm. The source is initially located directly above the detector at x = y = 0, z = 3.5 mm. (a) Detected signals as the source is translated in the y direction from this initial position. (b) Detected signals for the corresponding translations in the x direction.

Fig. 4
Fig. 4

Experimental imaging setup based on a line-scanned FP polymer-film sensing interferometer.

Fig. 5
Fig. 5

Line-source target used to evaluate image-reconstruction algorithms. The detector diameter was 0.2 mm.

Fig. 6
Fig. 6

Evaluation of image-reconstruction algorithms by use of the source-detector geometry depicted in Fig. 5. (a) Photoacoustic signals p(x, t) detected at each point of the line scan by use of a circular detector of diameter 0.2 mm, (b) the image reconstructed from p(x, t) by use of the Fourier-transform algorithm, and (c) the image reconstructed by use of the radial backprojection method.

Fig. 7
Fig. 7

Expanded view of Fig. 6(b) [Fourier reconstructed image p 0(x, z)].

Fig. 8
Fig. 8

Point-source target used to assess degree of out-of-plane signal rejection by use of a rectangular (800 μm × 200 μm) detector. α = 30°.

Fig. 9
Fig. 9

Influence of detector geometry. (a) Photoacoustic signals p(x, t) detected at each point of a line scan of the point-source target (Fig. 8) by use of a circular detector of diameter 0.2 mm, (b) the image reconstructed from these signals, and (c) the profile along the curve of x symbols superposed on (b). The corresponding detected photoacoustic signals, reconstructed image, and profile for a rectangular detector of dimensions 800 μm × 200 μm are shown in (d), (e), and (f), respectively.

Fig. 10
Fig. 10

Image slice thickness as a function of z. Reconstructed images of point-source target (Fig. 8) situated at three depths (reconstructed image): (a) z = 3.7 mm, (c) z = 5.84, and (e) z = 9.66 mm. (b), (d), and (f) show the horizontal profiles through the reconstructed dots for each image, illustrating the increasing image slice thickness with z of 9.66, 5.84, and 3.7, respectively.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

2pr, t2t-c2·2pr, t=t p0rδt,
p0r=ΓΨrμar,
pr, t=14πct|Δr|=ctp0r-Δrctds.
pr, t=12π3  Pkcosω·texpi·k·rd3k,
ω=c|k|=ckx2+ky2+kz2.
Pk=Pkx, kzδky,
ω=c|k|=ckx2+kz2.
Pkx, kz=ω/c2-kx2=2cω2-c2kx2ω Akx, ω,
Akx, ω=0- px, texp-ikxxcosωtdxdt.
FΘ  sinπL sinΘ/λπL sinΘ/λ.
Ft=detector volume pr, td3r=- pr, tDrd3r,Dr=1rdetector area0else.
Ft=14πct|Δr|=ctD * p0Δrctds,
D * p0Δr=- Drp0Δr-rd3r.
z2=z2+Δy2,
Δy=Δx tan α,
ΔY=n-1s sin α.

Metrics