Abstract

We describe a new technology for the fabrication of inexpensive high-quality mirrors. We begin by chemically producing a large number of metallic nanoparticles coated with organic ligands. The particles are then spread on a liquid substrate where they self-assemble to give optical quality reflective surfaces. Since liquid surfaces can be modified by a variety of means (e.g., rotation, electromagnetic fields), this opens the possibility of making a new class of versatile and inexpensive optical elements that can have complex shapes and that can be modified within short time scales. Interferometric measurements show optical quality surfaces. We have obtained reflectivity curves that show 80% peak reflectivities. We are confident that we can improve the reflectivity curves because theoretical models predict higher values. We expect nanoengineered liquid mirrors to be useful for scientific and engineering applications. The technology is interesting for large optics, such as large rotating parabolic mirrors, because of its low cost. Furthermore, because the surfaces of ferrofluids can be shaped with magnetic fields, one can generate complex, time-varying surfaces that are difficult to make with conventional techniques.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Girard, E. F. Borra, “Optical tests of a 2.5-m-diameter liquid mirror: behavior under external perturbations and scattered-light measurements,” Appl. Opt. 36, 6278–6288 (1997).
    [CrossRef]
  2. G. Tremblay, E. F. Borra, “Optical tests of a 3.7-m-diameter liquid mirror: behavior under external perturbations,” Appl. Opt. 39, 5651–5662 (2000).
    [CrossRef]
  3. R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, S. Flatt, “Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995).
    [CrossRef] [PubMed]
  4. P. Hickson, M. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
    [CrossRef]
  5. R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
    [CrossRef]
  6. P. R. Laird, E. F. Borra, A. Ritcey, H. Yockell-Lelièvre, N. Robitaille, V. Bérubé, “Applications of magnetically shaped liquid optical surfaces,” in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, G. W. Schinn, eds., Proc. SPIE4833, 451–457 (2003).
    [CrossRef]
  7. E. F. Borra, G. Tremblay, Y. Huot, J. Gauvin, “Gallium liquid mirrors: basic technology, optical-shop tests and observations,” Publ. Astron. Soc. Pac. 109, 319–325 (1997).
    [CrossRef]
  8. E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
    [CrossRef]
  9. D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
    [CrossRef]
  10. K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
    [CrossRef]
  11. P. C. Lee, D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
    [CrossRef]
  12. I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
    [CrossRef]
  13. U. Kreibig, C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).
    [CrossRef]
  14. S. Torquato, “The electrical conductivity of two-phase disordered composite media,” J. Appl. Phys. 58, 3790–3797 (1985).
    [CrossRef]
  15. U. Kreibig, “Optical absorption of small metallic films,” Surf. Sci. 156, 678–700 (1985).
    [CrossRef]
  16. S. Torquato, T. M. Truskett, P. G. Debenedetti, “Is random close packing of spheres well defined?,” Phys. Rev. Lett. 84, 2064–2067 (2000).
    [CrossRef] [PubMed]

2000 (2)

S. Torquato, T. M. Truskett, P. G. Debenedetti, “Is random close packing of spheres well defined?,” Phys. Rev. Lett. 84, 2064–2067 (2000).
[CrossRef] [PubMed]

G. Tremblay, E. F. Borra, “Optical tests of a 3.7-m-diameter liquid mirror: behavior under external perturbations,” Appl. Opt. 39, 5651–5662 (2000).
[CrossRef]

1999 (1)

E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
[CrossRef]

1998 (2)

P. Hickson, M. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
[CrossRef]

R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
[CrossRef]

1997 (2)

E. F. Borra, G. Tremblay, Y. Huot, J. Gauvin, “Gallium liquid mirrors: basic technology, optical-shop tests and observations,” Publ. Astron. Soc. Pac. 109, 319–325 (1997).
[CrossRef]

L. Girard, E. F. Borra, “Optical tests of a 2.5-m-diameter liquid mirror: behavior under external perturbations and scattered-light measurements,” Appl. Opt. 36, 6278–6288 (1997).
[CrossRef]

1995 (1)

1992 (1)

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

1989 (1)

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

1988 (1)

D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
[CrossRef]

1985 (2)

S. Torquato, “The electrical conductivity of two-phase disordered composite media,” J. Appl. Phys. 58, 3790–3797 (1985).
[CrossRef]

U. Kreibig, “Optical absorption of small metallic films,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

1982 (1)

P. C. Lee, D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

1969 (1)

U. Kreibig, C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).
[CrossRef]

Argall, P. S.

Artigau, E.

E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
[CrossRef]

Beauchemin, M.

R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
[CrossRef]

Bérubé, V.

P. R. Laird, E. F. Borra, A. Ritcey, H. Yockell-Lelièvre, N. Robitaille, V. Bérubé, “Applications of magnetically shaped liquid optical surfaces,” in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, G. W. Schinn, eds., Proc. SPIE4833, 451–457 (2003).
[CrossRef]

Borra, E. F.

G. Tremblay, E. F. Borra, “Optical tests of a 3.7-m-diameter liquid mirror: behavior under external perturbations,” Appl. Opt. 39, 5651–5662 (2000).
[CrossRef]

E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
[CrossRef]

R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
[CrossRef]

L. Girard, E. F. Borra, “Optical tests of a 2.5-m-diameter liquid mirror: behavior under external perturbations and scattered-light measurements,” Appl. Opt. 36, 6278–6288 (1997).
[CrossRef]

E. F. Borra, G. Tremblay, Y. Huot, J. Gauvin, “Gallium liquid mirrors: basic technology, optical-shop tests and observations,” Publ. Astron. Soc. Pac. 109, 319–325 (1997).
[CrossRef]

R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, S. Flatt, “Lidar measurements taken with a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995).
[CrossRef] [PubMed]

P. R. Laird, E. F. Borra, A. Ritcey, H. Yockell-Lelièvre, N. Robitaille, V. Bérubé, “Applications of magnetically shaped liquid optical surfaces,” in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, G. W. Schinn, eds., Proc. SPIE4833, 451–457 (2003).
[CrossRef]

Cabanac, R.

R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
[CrossRef]

Debenedetti, P. G.

S. Torquato, T. M. Truskett, P. G. Debenedetti, “Is random close packing of spheres well defined?,” Phys. Rev. Lett. 84, 2064–2067 (2000).
[CrossRef] [PubMed]

Efrima, S.

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
[CrossRef]

Farbman, I. W.

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

Flatt, S.

Fragstein, C. V.

U. Kreibig, C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).
[CrossRef]

Gauvin, J.

E. F. Borra, G. Tremblay, Y. Huot, J. Gauvin, “Gallium liquid mirrors: basic technology, optical-shop tests and observations,” Publ. Astron. Soc. Pac. 109, 319–325 (1997).
[CrossRef]

Girard, L.

Gordon, K. C.

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

Hickson, P.

P. Hickson, M. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
[CrossRef]

Huot, Y.

E. F. Borra, G. Tremblay, Y. Huot, J. Gauvin, “Gallium liquid mirrors: basic technology, optical-shop tests and observations,” Publ. Astron. Soc. Pac. 109, 319–325 (1997).
[CrossRef]

Kreibig, U.

U. Kreibig, “Optical absorption of small metallic films,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

U. Kreibig, C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).
[CrossRef]

Laird, P. R.

P. R. Laird, E. F. Borra, A. Ritcey, H. Yockell-Lelièvre, N. Robitaille, V. Bérubé, “Applications of magnetically shaped liquid optical surfaces,” in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, G. W. Schinn, eds., Proc. SPIE4833, 451–457 (2003).
[CrossRef]

Lee, P. C.

P. C. Lee, D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

Levi, O.

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

McGarvey, J. J.

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

Meisel, D.

P. C. Lee, D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

Mulrooney, M.

P. Hickson, M. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
[CrossRef]

Ritcey, A.

P. R. Laird, E. F. Borra, A. Ritcey, H. Yockell-Lelièvre, N. Robitaille, V. Bérubé, “Applications of magnetically shaped liquid optical surfaces,” in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, G. W. Schinn, eds., Proc. SPIE4833, 451–457 (2003).
[CrossRef]

Ritcey, A. M.

E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
[CrossRef]

Robitaille, N.

P. R. Laird, E. F. Borra, A. Ritcey, H. Yockell-Lelièvre, N. Robitaille, V. Bérubé, “Applications of magnetically shaped liquid optical surfaces,” in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, G. W. Schinn, eds., Proc. SPIE4833, 451–457 (2003).
[CrossRef]

Sargoytchev, S.

Sica, R. J.

Sparrow, C. T.

Taylor, K. P.

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

Torquato, S.

S. Torquato, T. M. Truskett, P. G. Debenedetti, “Is random close packing of spheres well defined?,” Phys. Rev. Lett. 84, 2064–2067 (2000).
[CrossRef] [PubMed]

S. Torquato, “The electrical conductivity of two-phase disordered composite media,” J. Appl. Phys. 58, 3790–3797 (1985).
[CrossRef]

Tremblay, G.

G. Tremblay, E. F. Borra, “Optical tests of a 3.7-m-diameter liquid mirror: behavior under external perturbations,” Appl. Opt. 39, 5651–5662 (2000).
[CrossRef]

E. F. Borra, G. Tremblay, Y. Huot, J. Gauvin, “Gallium liquid mirrors: basic technology, optical-shop tests and observations,” Publ. Astron. Soc. Pac. 109, 319–325 (1997).
[CrossRef]

Truskett, T. M.

S. Torquato, T. M. Truskett, P. G. Debenedetti, “Is random close packing of spheres well defined?,” Phys. Rev. Lett. 84, 2064–2067 (2000).
[CrossRef] [PubMed]

Yockell-Lelièvre, H.

P. R. Laird, E. F. Borra, A. Ritcey, H. Yockell-Lelièvre, N. Robitaille, V. Bérubé, “Applications of magnetically shaped liquid optical surfaces,” in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, G. W. Schinn, eds., Proc. SPIE4833, 451–457 (2003).
[CrossRef]

Yogev, D.

D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
[CrossRef]

Appl. Opt. (3)

Astrophys. J. (1)

R. Cabanac, E. F. Borra, M. Beauchemin, “A search for peculiar objects with the NASA orbital debris observatory 3-m liquid mirror telescope,” Astrophys. J. 509, 309–323 (1998).
[CrossRef]

Astrophys. J. Lett. (1)

E. F. Borra, A. M. Ritcey, E. Artigau, “Floating mirrors,” Astrophys. J. Lett. 516, L115–L118 (1999).
[CrossRef]

Astrophys. J. Suppl. (1)

P. Hickson, M. Mulrooney, “University of British Columbia-NASA Multi-Narrowband Survey. I. Description and photometric properties of the survey,” Astrophys. J. Suppl. 115, 35–42 (1998).
[CrossRef]

J. Appl. Phys. (1)

S. Torquato, “The electrical conductivity of two-phase disordered composite media,” J. Appl. Phys. 58, 3790–3797 (1985).
[CrossRef]

J. Chem. Phys. (1)

I. W. Farbman, O. Levi, S. Efrima, “Optical response of concentrated colloids of coinage metal in the near-ultraviolet, visible and infrared regions,” J. Chem. Phys. 96, 6477–6485 (1992).
[CrossRef]

J. Phys. Chem. (3)

D. Yogev, S. Efrima, “Novel silver metal like films,” J. Phys. Chem. 92, 5754–5760 (1988).
[CrossRef]

K. C. Gordon, J. J. McGarvey, K. P. Taylor, “Enhanced-Raman scattering from liquid metal films,” J. Phys. Chem. 93, 6814–6817 (1989).
[CrossRef]

P. C. Lee, D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

S. Torquato, T. M. Truskett, P. G. Debenedetti, “Is random close packing of spheres well defined?,” Phys. Rev. Lett. 84, 2064–2067 (2000).
[CrossRef] [PubMed]

Publ. Astron. Soc. Pac. (1)

E. F. Borra, G. Tremblay, Y. Huot, J. Gauvin, “Gallium liquid mirrors: basic technology, optical-shop tests and observations,” Publ. Astron. Soc. Pac. 109, 319–325 (1997).
[CrossRef]

Surf. Sci. (1)

U. Kreibig, “Optical absorption of small metallic films,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

Z. Phys. (1)

U. Kreibig, C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).
[CrossRef]

Other (1)

P. R. Laird, E. F. Borra, A. Ritcey, H. Yockell-Lelièvre, N. Robitaille, V. Bérubé, “Applications of magnetically shaped liquid optical surfaces,” in Applications of Photonic Technology 5, R. A. Lessard, G. A. Lampropoulos, G. W. Schinn, eds., Proc. SPIE4833, 451–457 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmission electron microscopy images of MELLF samples prepared from a silver colloid reduced to (a) a constant boiling temperature of 100 °C and (b) a slightly lower temperature of 95 °C.

Fig. 2
Fig. 2

Interferograms of (a) a clean optically flat mirror and (b) a 6.5-cm-diameter MELLF sample dried at the water-air interface. It is readily obvious that the surfaces have comparable qualities.

Fig. 3
Fig. 3

(a) Reflected light and (b) lost light (100 - reflected - transmitted), corresponding to scattered and absorbed light measured on a dried MELLF sample prepared from a colloid reduced to 100 °C.

Fig. 4
Fig. 4

Reflected light as a function of wavelength measured on dried MELLF samples prepared from silver colloids reduced to (a) 100 °C and (b) 95 °C.

Fig. 5
Fig. 5

Theoretical reflectivity curves calculated with the TKF model. The curves show the effect of the sizes of spherical particles (assuming spheres) for a filling factor of 55%.

Fig. 6
Fig. 6

Reflectivity curves calculated with the TKF model that correspond to filling factors of 55%, 65%, 75%, and 95% and assuming spherical silver particles with a 20-nm radius. We used Torquato’s values for randomly distributed spheres.

Metrics