Abstract

An automated method for producing multivariate optical element (MOE) interference filters that are robust to errors in the reactive magnetron sputtering process is described. Reactive magnetron sputtering produces films of excellent thickness and uniformity. However, small changes in the thickness of individual layers can have severe adverse effects on the predictive ability of the MOE. Adaptive reoptimization of the filter design during the deposition process can maintain the predictive ability of the final filter by changing the thickness of the undeposited layers to compensate for the errors in deposition. The merit function used, the standard error of calibration, is fundamentally different from the standard spectrum matching. This new merit function allows large changes in the transmission spectrum of the filter to maintain performance.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, UK, 1989).
  2. K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley, New York, 1998).
  3. A. G. Ryabenko, G. G. Kasparov, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).
  4. S. E. Bialkowski, “Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals,” Anal. Chem. 58, 2561–2563 (1986).
    [CrossRef]
  5. M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
    [CrossRef] [PubMed]
  6. M. L. Myrick, O. Soyemi, H. Li, L. Zhang, D. Eastwood, “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001).
    [CrossRef] [PubMed]
  7. O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
    [CrossRef]
  8. O. O. Soyemi, L. Zhang, D. Eastwood, H. Li, P. J. Gemperline, M. L. Myrick, “Simple optical computing device for chemical analysis,” in Functional Integration of Opto-Electro-Mechanical Devices and Systems, M. R. Descour, J. T. Rantala, eds., Proc. SPIE4284, 17–28 (2001).
    [CrossRef]
  9. D. Eastwood, O. D. Soyemi, J. Karunamuni, L. Zhang, H. Li, M. L. Myrick, “Field applications of stand-off sensing using visible/NIR multivariate optical computing,” in Water, Ground, and Air Pollution Monitoring and Remediation, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE4199, 105–114 (2001).
    [CrossRef]
  10. M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
    [CrossRef]
  11. O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 477–487 (2002).
    [CrossRef]
  12. O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Design of angle-tolerant multivariate optical elements for chemical imaging,” Appl. Opt. 41, 1936–1941 (2002).
    [CrossRef] [PubMed]
  13. M. Myrick, “Multivariate optical elements simplify spectroscopy,” Laser Focus World 38, 91–94 (2002).
  14. M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
    [CrossRef]
  15. A. M. C. Prakash, C. M. Stellman, K. S. Booksh, “Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).
    [CrossRef]
  16. B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 32, 2351–2360 (1993).
    [CrossRef] [PubMed]
  17. B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
    [CrossRef] [PubMed]
  18. B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
    [CrossRef]
  19. B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kituchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
    [CrossRef]
  20. J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).
  21. T. F. Coleman, M. A. Branch, A. Grace, Optimization Toolbox, Users Guide Version 2 (MathWorks, Natick, Mass., 1999).

2002 (4)

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 477–487 (2002).
[CrossRef]

O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Design of angle-tolerant multivariate optical elements for chemical imaging,” Appl. Opt. 41, 1936–1941 (2002).
[CrossRef] [PubMed]

M. Myrick, “Multivariate optical elements simplify spectroscopy,” Laser Focus World 38, 91–94 (2002).

2001 (2)

M. L. Myrick, O. Soyemi, H. Li, L. Zhang, D. Eastwood, “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001).
[CrossRef] [PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

2000 (1)

1999 (1)

A. M. C. Prakash, C. M. Stellman, K. S. Booksh, “Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).
[CrossRef]

1998 (2)

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

1993 (1)

1992 (1)

1991 (1)

A. G. Ryabenko, G. G. Kasparov, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).

1986 (1)

S. E. Bialkowski, “Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals,” Anal. Chem. 58, 2561–2563 (1986).
[CrossRef]

Akiyama, T.

B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kituchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[CrossRef]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

Aust, J. F.

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

Beebe, K. R.

K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley, New York, 1998).

Bialkowski, S. E.

S. E. Bialkowski, “Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals,” Anal. Chem. 58, 2561–2563 (1986).
[CrossRef]

Booksh, K. S.

A. M. C. Prakash, C. M. Stellman, K. S. Booksh, “Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).
[CrossRef]

Branch, M. A.

T. F. Coleman, M. A. Branch, A. Grace, Optimization Toolbox, Users Guide Version 2 (MathWorks, Natick, Mass., 1999).

Clarke, G.

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

Clarke, G. A.

Coleman, T. F.

T. F. Coleman, M. A. Branch, A. Grace, Optimization Toolbox, Users Guide Version 2 (MathWorks, Natick, Mass., 1999).

Dennis, J. E.

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).

Dobrowolski, J. A.

Eastwood, D.

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

M. L. Myrick, O. Soyemi, H. Li, L. Zhang, D. Eastwood, “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001).
[CrossRef] [PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

O. O. Soyemi, L. Zhang, D. Eastwood, H. Li, P. J. Gemperline, M. L. Myrick, “Simple optical computing device for chemical analysis,” in Functional Integration of Opto-Electro-Mechanical Devices and Systems, M. R. Descour, J. T. Rantala, eds., Proc. SPIE4284, 17–28 (2001).
[CrossRef]

D. Eastwood, O. D. Soyemi, J. Karunamuni, L. Zhang, H. Li, M. L. Myrick, “Field applications of stand-off sensing using visible/NIR multivariate optical computing,” in Water, Ground, and Air Pollution Monitoring and Remediation, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE4199, 105–114 (2001).
[CrossRef]

Farr, J. R.

M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
[CrossRef]

Gemperline, P.

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Gemperline, P. J.

O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 477–487 (2002).
[CrossRef]

O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Design of angle-tolerant multivariate optical elements for chemical imaging,” Appl. Opt. 41, 1936–1941 (2002).
[CrossRef] [PubMed]

O. O. Soyemi, L. Zhang, D. Eastwood, H. Li, P. J. Gemperline, M. L. Myrick, “Simple optical computing device for chemical analysis,” in Functional Integration of Opto-Electro-Mechanical Devices and Systems, M. R. Descour, J. T. Rantala, eds., Proc. SPIE4284, 17–28 (2001).
[CrossRef]

Grace, A.

T. F. Coleman, M. A. Branch, A. Grace, Optimization Toolbox, Users Guide Version 2 (MathWorks, Natick, Mass., 1999).

Green, A. E.

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

Greer, A.

M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
[CrossRef]

Haibach, F.

M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
[CrossRef]

Haibach, F. G.

Howe, L.

B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kituchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[CrossRef]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

Karunamuni, J.

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

D. Eastwood, O. D. Soyemi, J. Karunamuni, L. Zhang, H. Li, M. L. Myrick, “Field applications of stand-off sensing using visible/NIR multivariate optical computing,” in Water, Ground, and Air Pollution Monitoring and Remediation, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE4199, 105–114 (2001).
[CrossRef]

Kasparov, G. G.

A. G. Ryabenko, G. G. Kasparov, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).

Kikuchi, K.

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

Kituchi, K.

Li, H.

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

M. L. Myrick, O. Soyemi, H. Li, L. Zhang, D. Eastwood, “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001).
[CrossRef] [PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

O. O. Soyemi, L. Zhang, D. Eastwood, H. Li, P. J. Gemperline, M. L. Myrick, “Simple optical computing device for chemical analysis,” in Functional Integration of Opto-Electro-Mechanical Devices and Systems, M. R. Descour, J. T. Rantala, eds., Proc. SPIE4284, 17–28 (2001).
[CrossRef]

D. Eastwood, O. D. Soyemi, J. Karunamuni, L. Zhang, H. Li, M. L. Myrick, “Field applications of stand-off sensing using visible/NIR multivariate optical computing,” in Water, Ground, and Air Pollution Monitoring and Remediation, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE4199, 105–114 (2001).
[CrossRef]

M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
[CrossRef]

Martens, H.

H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, UK, 1989).

Matsumoto, A.

B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kituchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[CrossRef]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

Myrick, M.

M. Myrick, “Multivariate optical elements simplify spectroscopy,” Laser Focus World 38, 91–94 (2002).

Myrick, M. L.

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Design of angle-tolerant multivariate optical elements for chemical imaging,” Appl. Opt. 41, 1936–1941 (2002).
[CrossRef] [PubMed]

O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 477–487 (2002).
[CrossRef]

M. L. Myrick, O. Soyemi, H. Li, L. Zhang, D. Eastwood, “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001).
[CrossRef] [PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

O. O. Soyemi, L. Zhang, D. Eastwood, H. Li, P. J. Gemperline, M. L. Myrick, “Simple optical computing device for chemical analysis,” in Functional Integration of Opto-Electro-Mechanical Devices and Systems, M. R. Descour, J. T. Rantala, eds., Proc. SPIE4284, 17–28 (2001).
[CrossRef]

D. Eastwood, O. D. Soyemi, J. Karunamuni, L. Zhang, H. Li, M. L. Myrick, “Field applications of stand-off sensing using visible/NIR multivariate optical computing,” in Water, Ground, and Air Pollution Monitoring and Remediation, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE4199, 105–114 (2001).
[CrossRef]

M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
[CrossRef]

Naes, T.

H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, UK, 1989).

Nelson, M. P.

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

Osborne, N.

B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kituchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[CrossRef]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

Pell, R. J.

K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley, New York, 1998).

Prakash, A. M. C.

A. M. C. Prakash, C. M. Stellman, K. S. Booksh, “Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).
[CrossRef]

Priore, R.

M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
[CrossRef]

Ranger, M.

B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kituchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[CrossRef]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

Ryabenko, A. G.

A. G. Ryabenko, G. G. Kasparov, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).

Schiza, M. V.

M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
[CrossRef]

Schnabel, R. B.

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).

Seasholtz, M. B.

K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley, New York, 1998).

Song, Y.

B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kituchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[CrossRef]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

Soyemi, O.

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

M. L. Myrick, O. Soyemi, H. Li, L. Zhang, D. Eastwood, “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001).
[CrossRef] [PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Soyemi, O. D.

D. Eastwood, O. D. Soyemi, J. Karunamuni, L. Zhang, H. Li, M. L. Myrick, “Field applications of stand-off sensing using visible/NIR multivariate optical computing,” in Water, Ground, and Air Pollution Monitoring and Remediation, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE4199, 105–114 (2001).
[CrossRef]

Soyemi, O. O.

O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Design of angle-tolerant multivariate optical elements for chemical imaging,” Appl. Opt. 41, 1936–1941 (2002).
[CrossRef] [PubMed]

O. O. Soyemi, F. G. Haibach, P. J. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 477–487 (2002).
[CrossRef]

M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
[CrossRef]

O. O. Soyemi, L. Zhang, D. Eastwood, H. Li, P. J. Gemperline, M. L. Myrick, “Simple optical computing device for chemical analysis,” in Functional Integration of Opto-Electro-Mechanical Devices and Systems, M. R. Descour, J. T. Rantala, eds., Proc. SPIE4284, 17–28 (2001).
[CrossRef]

Stellman, C. M.

A. M. C. Prakash, C. M. Stellman, K. S. Booksh, “Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).
[CrossRef]

Sullivan, B. T.

Synowicki, R. A.

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Verly, P. G.

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

Zhang, L.

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

M. L. Myrick, O. Soyemi, H. Li, L. Zhang, D. Eastwood, “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001).
[CrossRef] [PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

O. O. Soyemi, L. Zhang, D. Eastwood, H. Li, P. J. Gemperline, M. L. Myrick, “Simple optical computing device for chemical analysis,” in Functional Integration of Opto-Electro-Mechanical Devices and Systems, M. R. Descour, J. T. Rantala, eds., Proc. SPIE4284, 17–28 (2001).
[CrossRef]

D. Eastwood, O. D. Soyemi, J. Karunamuni, L. Zhang, H. Li, M. L. Myrick, “Field applications of stand-off sensing using visible/NIR multivariate optical computing,” in Water, Ground, and Air Pollution Monitoring and Remediation, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE4199, 105–114 (2001).
[CrossRef]

Anal. Chem. (3)

S. E. Bialkowski, “Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals,” Anal. Chem. 58, 2561–2563 (1986).
[CrossRef]

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).
[CrossRef] [PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Chemom. Intell. Lab. Syst. (1)

A. M. C. Prakash, C. M. Stellman, K. S. Booksh, “Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).
[CrossRef]

Fresenius J. Anal. Chem. (1)

M. L. Myrick, O. Soyemi, H. Li, L. Zhang, D. Eastwood, “Spectral tolerance determination for multivariate optical element design,” Fresenius J. Anal. Chem. 369, 351–355 (2001).
[CrossRef] [PubMed]

Laser Focus World (1)

M. Myrick, “Multivariate optical elements simplify spectroscopy,” Laser Focus World 38, 91–94 (2002).

Pattern Recogn. Image Anal. (1)

A. G. Ryabenko, G. G. Kasparov, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).

Vacuum (1)

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex optical multilayer filters using automated deposition system,” Vacuum 51, 647–654 (1998).
[CrossRef]

Vib. Spectrosc. (1)

M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E. Green, P. Gemperline, “A single-element all-optical approach to chemometric prediction,” Vib. Spectrosc. 28, 73–81 (2002).
[CrossRef]

Other (7)

O. O. Soyemi, L. Zhang, D. Eastwood, H. Li, P. J. Gemperline, M. L. Myrick, “Simple optical computing device for chemical analysis,” in Functional Integration of Opto-Electro-Mechanical Devices and Systems, M. R. Descour, J. T. Rantala, eds., Proc. SPIE4284, 17–28 (2001).
[CrossRef]

D. Eastwood, O. D. Soyemi, J. Karunamuni, L. Zhang, H. Li, M. L. Myrick, “Field applications of stand-off sensing using visible/NIR multivariate optical computing,” in Water, Ground, and Air Pollution Monitoring and Remediation, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE4199, 105–114 (2001).
[CrossRef]

H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, UK, 1989).

K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide (Wiley, New York, 1998).

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).

T. F. Coleman, M. A. Branch, A. Grace, Optimization Toolbox, Users Guide Version 2 (MathWorks, Natick, Mass., 1999).

M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. Li, R. Priore, “Application of multivariate optical computing to simple near-infrared point measurements,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 208–215 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulation of the effect of an increase in thickness error on the SEC of a MOE (a) without reoptimization and (b) with reoptimization. The mean (solid curve) of 100 simulations at each error level is indicated.

Fig. 2
Fig. 2

Comparison of the effect of reoptimization of the MOE SEC as the layers are deposited: (a) without reoptimization and (b) with reoptimization. The maximum error in depositing each layer is 5 nm.

Fig. 3
Fig. 3

Comparison of the effect of reoptimization on the filter design (a) without reoptimization and (b) with reoptimization.

Fig. 4
Fig. 4

Comparison of the effect of reoptimization on the transmission spectrum of the MOE. The original (heavy solid curve), the five best reoptimized (light solid curve), and the five second-best (dotted curve) MOE spectra are shown. The conserved motifs are the areas above the 50% transmission line (a) and the crossing of the 50% transmission line at 550 nm (b).

Fig. 5
Fig. 5

Transmission spectrum of the original design (solid curve), the measured filter spectrum after production errors and reoptimization (dashed curve), and the final spectrum (dotted curve) as calculated from film thicknesses and optical constants.

Tables (2)

Tables Icon

Table 1 Comparison of PCR, the Original MOE Design, and the Fabricated MOE to Predict the Concentration in the Calibration and Validation Data Sets

Tables Icon

Table 2 Effect of Actual Deposition Errors on the Eight-Layer Filter Designa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ŷ=GT-R · x+offset.
SEC=1Ni=1Nyi- GT-R · xi+offset21/2.

Metrics