Abstract

An imaging technique to measure modulated surface displacements on microelectronic devices is presented. A device is supplied by a sinusoidal current that creates a modulated variation of temperature. To measure the induced normal surface displacement, we use an electronic speckle pattern interferometry setup in which we introduce a secondary modulation using an electro-optic modulator. To extract the displacement information, we then analyze the term at the blinking frequency, which is equal to the difference between the frequency of the surface displacement and the frequency of the secondary modulation. As the photodetector is a visible CCD camera, we apply heterodyne detection by using a multichannel lock-in scheme. We have experimented with this new technique on a membrane to measure the amplitude of modulated surface displacement induced by the Joule effect.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Sharp, “Electronic speckle pattern interferometry (ESPI),” Opt. Lasers Eng. 11, 241–255 (1989).
    [CrossRef]
  2. K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
    [CrossRef]
  3. O. J. Løkberg, K. Høgmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
    [CrossRef]
  4. K. Høgmoen, O. J. Løkberg, “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Appl. Opt. 16, 1869–1875 (1977).
    [CrossRef] [PubMed]
  5. A. J. Moore, D. P. Hand, J. S. Barton, J. D. C. Jones, “Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera,” Appl. Opt. 38, 1159–1162 (1999).
    [CrossRef]
  6. S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J. P. Gilles, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng. 36, 77–101 (2001).
    [CrossRef]
  7. S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).
  8. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965).
  9. P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris) 26(6), 251–265 (1995).
    [CrossRef]
  10. S. Lévèque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photons paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  11. S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible change coupled device camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
    [CrossRef]
  12. R. Jones, C. Wykes, Holographic and Speckle Pattern Interferometry (Cambridge University Press, Cambridge, England, 1989).

2001

S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J. P. Gilles, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng. 36, 77–101 (2001).
[CrossRef]

1999

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible change coupled device camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

S. Lévèque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photons paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

A. J. Moore, D. P. Hand, J. S. Barton, J. D. C. Jones, “Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera,” Appl. Opt. 38, 1159–1162 (1999).
[CrossRef]

1998

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

1995

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris) 26(6), 251–265 (1995).
[CrossRef]

1989

B. Sharp, “Electronic speckle pattern interferometry (ESPI),” Opt. Lasers Eng. 11, 241–255 (1989).
[CrossRef]

1977

1976

O. J. Løkberg, K. Høgmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
[CrossRef]

Barton, J. S.

Boccara, A. C.

S. Lévèque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photons paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris) 26(6), 251–265 (1995).
[CrossRef]

Bosseboeuf, A.

S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J. P. Gilles, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng. 36, 77–101 (2001).
[CrossRef]

Claeys, W.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Cornet, A.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Danaie, K.

S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J. P. Gilles, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng. 36, 77–101 (2001).
[CrossRef]

Dilhaire, S.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Forget, B. C.

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible change coupled device camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

Fournier, D.

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible change coupled device camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

Gilles, J. P.

S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J. P. Gilles, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng. 36, 77–101 (2001).
[CrossRef]

Gleyzes, P.

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris) 26(6), 251–265 (1995).
[CrossRef]

Grauby, S.

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible change coupled device camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

Guernet, F.

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris) 26(6), 251–265 (1995).
[CrossRef]

Hand, D. P.

Høgmoen, K.

K. Høgmoen, O. J. Løkberg, “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Appl. Opt. 16, 1869–1875 (1977).
[CrossRef] [PubMed]

O. J. Løkberg, K. Høgmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
[CrossRef]

Holé, S.

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible change coupled device camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

Joannes, L.

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Jones, J. D. C.

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Pattern Interferometry (Cambridge University Press, Cambridge, England, 1989).

Jorez, S.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

Lebec, M.

Lévèque, S.

Løkberg, O. J.

K. Høgmoen, O. J. Løkberg, “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Appl. Opt. 16, 1869–1875 (1977).
[CrossRef] [PubMed]

O. J. Løkberg, K. Høgmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
[CrossRef]

Moore, A. J.

Nassim, K.

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Petitgrand, S.

S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J. P. Gilles, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng. 36, 77–101 (2001).
[CrossRef]

Saint-Jalmes, H.

Schaub, E.

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

Sharp, B.

B. Sharp, “Electronic speckle pattern interferometry (ESPI),” Opt. Lasers Eng. 11, 241–255 (1989).
[CrossRef]

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Pattern Interferometry (Cambridge University Press, Cambridge, England, 1989).

Yahiaoui, R.

S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J. P. Gilles, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng. 36, 77–101 (2001).
[CrossRef]

Appl. Opt.

J. Opt. (Paris)

P. Gleyzes, F. Guernet, A. C. Boccara, “Profilométrie picométrique. II. L’approche multi-détecteur et la détection synchrone multiplexée,” J. Opt. (Paris) 26(6), 251–265 (1995).
[CrossRef]

J. Phys. E

O. J. Løkberg, K. Høgmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
[CrossRef]

Microelectron. Reliab.

K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys, “Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI),” Microelectron. Reliab. 38, 1341–1345 (1998).
[CrossRef]

S. Dilhaire, S. Jorez, A. Cornet, E. Schaub, W. Claeys, “Optical method for the measurement of the thermomechanical behaviour of electronic devices,” Microelectron. Reliab. 38, 981–985 (1999).

Opt. Lasers Eng.

B. Sharp, “Electronic speckle pattern interferometry (ESPI),” Opt. Lasers Eng. 11, 241–255 (1989).
[CrossRef]

S. Petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, J. P. Gilles, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope,” Opt. Lasers Eng. 36, 77–101 (2001).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

S. Grauby, B. C. Forget, S. Holé, D. Fournier, “High resolution photothermal imaging of high frequency phenomena using a visible change coupled device camera associated with a multichannel lock-in scheme,” Rev. Sci. Instrum. 70, 3603–3608 (1999).
[CrossRef]

Other

R. Jones, C. Wykes, Holographic and Speckle Pattern Interferometry (Cambridge University Press, Cambridge, England, 1989).

M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Bessel functions.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

(a) Optical image and (b) schematic view of the membrane.

Fig. 4
Fig. 4

Images of the surface displacement of the membrane for different supplying voltages.

Fig. 5
Fig. 5

Normal surface displacement versus current.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Ipt=I021+V cosϕsp+ϕdt,
ϕd=a cos2πft=a cosωt,
a=4π/λδ,
Bt=b cosΩt.
Ipt=I021+V cosϕsp+a cosωt+b cosΩtS.
S=cos ϕspcosa cos ωtcosb cos Ωt-sina cos ωtsinb cos Ωt-sin ϕspcosa cos ωtsinb cos Ωt+sina cos ωtcosb cos Ωt.
cosA cos θ=J0A+2 k=1-1kJ2kAcos2kθ,
sinA cos θ=2 k=0-1kJ2k+1Acos2k+1θ.
I021+V cos ϕspJ0aJ0b;
I0V cos ϕspJ1aJ1b;
I0V sin ϕspJ0aJ1b;
I0V sin ϕspJ1aJ0b;
I0V cos ϕspJkaJkb.
C1=I3-I12+I4-I221/2,
In=1TcamT0+n-1TcamT0+nTcam Iptdt for n=14,
C1=42π VI0J1aJ1bcos ϕsp.
Bt=b cosΩt+π/2.
C2=I3-I12+I4-I221/2=42π VI0J1aJ1bcosϕsp+π2=42π VI0J1aJ1bsin ϕsp.
C12+C221/2=42π VI0J1aJ1b.
J1a=a2=πC12+C221/242VI0J1b.
δ=λC12+C221/282VI0J1b.

Metrics