Abstract

Recent advances in the development of ultrasensitive micromechanical thermal detectors have led to the advent of novel subfemtojoule microcalorimetric spectroscopy (CalSpec). On the basis of principles of photothermal IR spectroscopy combined with efficient thermomechanical transduction, CalSpec provides acquisition of vibrational spectra of microscopic samples and absorbates. We use CalSpec as a method of identifying nanogram quantities of biological micro-organisms. Our studies focus on Bacillus subtilis and Bacillus cereus spores as simulants for Bacillus anthracis spores. Using CalSpec, we measured IR spectra of B. subtilis and B. cereus spores present on surfaces in nanogram quantities (approximately 100–1000 spores). The spectra acquired in the wavelength range of 690–4000 cm-1 (2.5–14.5 μm) contain information-rich vibrational signatures that reflect the different ratios of biochemical makeup of the micro-organisms. The distinctive features in the spectra obtained for the two types of micro-organism can be used to distinguish between the spores of the Bacillus family. As compared with conventional IR and Fourier-transform IR microscopic spectroscopy techniques, the advantages of the present technique include significantly improved sensitivity (at least a full order of magnitude), absence of expensive IR detectors, and excellent potential for miniaturization.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Bush, B. H. Abrams, A. Beall, C. C. Johnson, “Index case of fatal inhalational anthrax due to bioterrorism in the United States,” New Engl. J. Med. 345, 1607–1610 (2001).
    [CrossRef] [PubMed]
  2. M. N. Swartz, “Current concepts: recognition and management of anthrax—an update,” New Engl. J. Med. 345, 1621–1626 (2001).
    [CrossRef]
  3. R. C. Liddington, “A molecular full nelson,” Nature (London) 415, 373–374 (2002).
    [CrossRef]
  4. R. Liddington, A. Pannifer, P. Hanna, R. J. Collier, “Crystallographic studies of the anthrax lethal toxin,” J. Appl. Microbiol. 87, 282–291 (1999).
    [CrossRef] [PubMed]
  5. A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
    [CrossRef]
  6. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm,” Appl. Opt. 36, 2818–2824 (1997).
    [CrossRef] [PubMed]
  7. N. Munakata, K. Hieda, K. Kobayashi, A. Ito, T. Ito, “Action spectra in ultraviolet wavelengths (150–250 nm) for inactivation and mutagenesis of Bacillus-subtilis spores obtained with synchrotron radiation,” Photochem. Photobiol. 44, 385–390 (1986).
    [CrossRef] [PubMed]
  8. L. Y. Santo, R. H. Doi, “Ultrastructural analysis during germination and outgrowth of Bacillus-Subtilis spores,” J. Bacteriol. 120, 475–481 (1974).
    [PubMed]
  9. B. Maruo, H. Yoshikawa, Bacillus subtilis: Molecular Biology and Industrial Application (Kodansha, Tokyo, 1989).
  10. J. Irudayaraj, H. Yang, S. Sakhamuri, “Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy,” J. Mol. Struct. 606, 181–188 (2002).
    [CrossRef]
  11. E. Elhanany, R. Barak, M. Fisher, D. Kobiler, Z. Altboum, “Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 15, 2110–2116 (2001).
    [CrossRef] [PubMed]
  12. L. E. Rodriguez-Saona, F. M. Khambaty, F. S. Fry, E. M. Calvey, “Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy,” J. Agric. Food Chem. 49, 574–579 (2001).
    [CrossRef] [PubMed]
  13. J. J. Quinlan, P. M. Foegeding, “Monoclonal antibodies for use in detection of Bacillus and Clostridium spores,” Appl. Environ. Microbiol. 63, 482–487 (1997).
    [PubMed]
  14. P. Weber, J. M. Greenberg, “Can spores survive in interstellar space,” Nature (London) 316, 403–407 (1985).
    [CrossRef]
  15. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879–1896 (1968).
    [CrossRef] [PubMed]
  16. P. Setlow, Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (American Society for Microbiology, Washington, D.C., 1993).
  17. L. A. Broussard, “Biological agents: weapons of warfare and bioterrorism,” Mol. Diagn. 6, 323–333 (2001).
  18. J. G. Bruno, J. L. Kiel, “In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection,” Biosens. Bioelectron. 14, 457–464 (1999).
    [CrossRef] [PubMed]
  19. A. Castro, R. T. Okinaka, “Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution,” Analyst (London) 125, 9–11 (1999).
    [CrossRef]
  20. D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
    [CrossRef]
  21. P. J. Stopa, “The flow cytometry of Bacillus anthracis spores revisited,” Cytometry 41, 237–244 (2000).
    [PubMed]
  22. S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
    [CrossRef]
  23. E. A. Henchal, J. D. Teska, G. V. Ludwig, D. R. Shoemaker, J. W. Ezzell, “Current laboratory methods for biological threat agent identification,” Clin. Lab. Med. 21, 661–667 (2001).
    [PubMed]
  24. F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
    [CrossRef]
  25. D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
    [CrossRef] [PubMed]
  26. A. P. Snyder, P. B. W. Smith, J. P. Dworzanski, H. L. C. Meuzelaar, “Pyrolysis-gas chromatology-mass spectrometry: detection of biological warfare agents,” in Mass Spectrometry for the Characterization of Microorganisms, C. Fenselau, ed., ACS Symposium Series No. 541 (Oxford U. Press, Oxford, UK, 1994), pp. 62–68.
  27. R. A. Gieray, P. T. A. Reilly, M. Yang, W. B. Whitten, J. M. Ramsey, “Real-time detection of individual airborne bacteria,” J. Microbiol. Methods 29, 191–199 (1997).
    [CrossRef]
  28. J. E. Katon, “Applications of vibrational microspectroscopy to chemistry,” Vib. Spectrosc. 7, 201–229 (1994).
    [CrossRef]
  29. D. Helm, H. Labischinski, D. Naumann, “Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach,” J. Microbiol. Methods 14, 127–142 (1991).
    [CrossRef]
  30. J. M. Legal, M. Manfait, T. Theophanides, “Applications of FTIR spectroscopy in structural studies of cells and bacteria,” J. Mol. Struct. 242, 397–407 (1991).
    [CrossRef]
  31. D. Helm, H. Labischinski, G. Schallehn, D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared-spectroscopy,” J. Gen. Microbiol. 137, 69–79 (1991).
    [CrossRef] [PubMed]
  32. D. Naumann, D. Helm, H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature (London) 351, 81–82 (1991).
    [CrossRef]
  33. L. Mariey, J. P. Signolle, C. Amiel, J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26, 151–159 (2001).
    [CrossRef]
  34. H. Oberreuter, H. Seiler, S. Scherer, “Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy,” Int. J. Syst. Evolutionary Microbiol. 52, 91–100 (2002).
  35. T. Udelhoven, D. Naumann, J. Schmitt, “Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria,” Appl. Spectrosc. 54, 1471–1479 (2000).
    [CrossRef]
  36. H. C. van der Mei, D. Naumann, H. J. Busscher, “Grouping of Streptococcus mitis strains grown on different growth media by FT-IR,” Infrared Phys. Technol. 37, 561–564 (1996).
    [CrossRef]
  37. R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, D. B. Kell, “Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks,” FEMS Microbiol. Lett. 140, 233–239 (1996).
    [CrossRef] [PubMed]
  38. P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
    [CrossRef]
  39. P. I. Oden, P. G. Datskos, T. Thundat, R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett. 69, 3277–3279 (1996).
    [CrossRef]
  40. P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
    [CrossRef]
  41. J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 372, 79–81 (1994).
    [CrossRef]
  42. Y. Nakagawa, R. Schafer, H. J. Guntherodt, “Picojoule and submillisecond calorimetry with micromechanical probes,” Appl. Phys. Lett. 73, 2296–2298 (1998).
    [CrossRef]
  43. R. Berger, C. Gerber, J. K. Gimzewski, E. Meyer, H. J. Guntherodt, “Thermal analysis using a micromechanical calorimeter,” Appl. Phys. Lett. 69, 40–42 (1996).
    [CrossRef]
  44. E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
    [CrossRef]
  45. E. T. Arakawa, P. S. Tuminello, B. N. Khare, M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 μm,” Biospectroscopy 3, 73–80 (1997).
    [CrossRef]
  46. D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” Appl. Spectrosc. Rev. 36, 239–298 (2001).
    [CrossRef]
  47. L. Bozec, A. Hammiche, H. M. Pollock, M. Conroy, “Localized photothermal infrared spectroscopy using a proximal probe,” J. Appl. Phys. 90, 5159–5165 (2001).
    [CrossRef]

2002 (4)

R. C. Liddington, “A molecular full nelson,” Nature (London) 415, 373–374 (2002).
[CrossRef]

J. Irudayaraj, H. Yang, S. Sakhamuri, “Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy,” J. Mol. Struct. 606, 181–188 (2002).
[CrossRef]

D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
[CrossRef] [PubMed]

H. Oberreuter, H. Seiler, S. Scherer, “Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy,” Int. J. Syst. Evolutionary Microbiol. 52, 91–100 (2002).

2001 (11)

P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
[CrossRef]

E. A. Henchal, J. D. Teska, G. V. Ludwig, D. R. Shoemaker, J. W. Ezzell, “Current laboratory methods for biological threat agent identification,” Clin. Lab. Med. 21, 661–667 (2001).
[PubMed]

E. Elhanany, R. Barak, M. Fisher, D. Kobiler, Z. Altboum, “Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 15, 2110–2116 (2001).
[CrossRef] [PubMed]

L. E. Rodriguez-Saona, F. M. Khambaty, F. S. Fry, E. M. Calvey, “Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy,” J. Agric. Food Chem. 49, 574–579 (2001).
[CrossRef] [PubMed]

L. A. Broussard, “Biological agents: weapons of warfare and bioterrorism,” Mol. Diagn. 6, 323–333 (2001).

L. M. Bush, B. H. Abrams, A. Beall, C. C. Johnson, “Index case of fatal inhalational anthrax due to bioterrorism in the United States,” New Engl. J. Med. 345, 1607–1610 (2001).
[CrossRef] [PubMed]

M. N. Swartz, “Current concepts: recognition and management of anthrax—an update,” New Engl. J. Med. 345, 1621–1626 (2001).
[CrossRef]

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

L. Mariey, J. P. Signolle, C. Amiel, J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26, 151–159 (2001).
[CrossRef]

D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” Appl. Spectrosc. Rev. 36, 239–298 (2001).
[CrossRef]

L. Bozec, A. Hammiche, H. M. Pollock, M. Conroy, “Localized photothermal infrared spectroscopy using a proximal probe,” J. Appl. Phys. 90, 5159–5165 (2001).
[CrossRef]

2000 (3)

P. J. Stopa, “The flow cytometry of Bacillus anthracis spores revisited,” Cytometry 41, 237–244 (2000).
[PubMed]

S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
[CrossRef]

T. Udelhoven, D. Naumann, J. Schmitt, “Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria,” Appl. Spectrosc. 54, 1471–1479 (2000).
[CrossRef]

1999 (3)

R. Liddington, A. Pannifer, P. Hanna, R. J. Collier, “Crystallographic studies of the anthrax lethal toxin,” J. Appl. Microbiol. 87, 282–291 (1999).
[CrossRef] [PubMed]

J. G. Bruno, J. L. Kiel, “In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection,” Biosens. Bioelectron. 14, 457–464 (1999).
[CrossRef] [PubMed]

A. Castro, R. T. Okinaka, “Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution,” Analyst (London) 125, 9–11 (1999).
[CrossRef]

1998 (2)

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

Y. Nakagawa, R. Schafer, H. J. Guntherodt, “Picojoule and submillisecond calorimetry with micromechanical probes,” Appl. Phys. Lett. 73, 2296–2298 (1998).
[CrossRef]

1997 (4)

E. T. Arakawa, P. S. Tuminello, B. N. Khare, M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 μm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

R. A. Gieray, P. T. A. Reilly, M. Yang, W. B. Whitten, J. M. Ramsey, “Real-time detection of individual airborne bacteria,” J. Microbiol. Methods 29, 191–199 (1997).
[CrossRef]

J. J. Quinlan, P. M. Foegeding, “Monoclonal antibodies for use in detection of Bacillus and Clostridium spores,” Appl. Environ. Microbiol. 63, 482–487 (1997).
[PubMed]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef] [PubMed]

1996 (6)

H. C. van der Mei, D. Naumann, H. J. Busscher, “Grouping of Streptococcus mitis strains grown on different growth media by FT-IR,” Infrared Phys. Technol. 37, 561–564 (1996).
[CrossRef]

R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, D. B. Kell, “Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks,” FEMS Microbiol. Lett. 140, 233–239 (1996).
[CrossRef] [PubMed]

P. I. Oden, P. G. Datskos, T. Thundat, R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett. 69, 3277–3279 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
[CrossRef]

R. Berger, C. Gerber, J. K. Gimzewski, E. Meyer, H. J. Guntherodt, “Thermal analysis using a micromechanical calorimeter,” Appl. Phys. Lett. 69, 40–42 (1996).
[CrossRef]

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
[CrossRef]

1995 (1)

D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
[CrossRef]

1994 (2)

J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 372, 79–81 (1994).
[CrossRef]

J. E. Katon, “Applications of vibrational microspectroscopy to chemistry,” Vib. Spectrosc. 7, 201–229 (1994).
[CrossRef]

1991 (4)

D. Helm, H. Labischinski, D. Naumann, “Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach,” J. Microbiol. Methods 14, 127–142 (1991).
[CrossRef]

J. M. Legal, M. Manfait, T. Theophanides, “Applications of FTIR spectroscopy in structural studies of cells and bacteria,” J. Mol. Struct. 242, 397–407 (1991).
[CrossRef]

D. Helm, H. Labischinski, G. Schallehn, D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared-spectroscopy,” J. Gen. Microbiol. 137, 69–79 (1991).
[CrossRef] [PubMed]

D. Naumann, D. Helm, H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature (London) 351, 81–82 (1991).
[CrossRef]

1986 (1)

N. Munakata, K. Hieda, K. Kobayashi, A. Ito, T. Ito, “Action spectra in ultraviolet wavelengths (150–250 nm) for inactivation and mutagenesis of Bacillus-subtilis spores obtained with synchrotron radiation,” Photochem. Photobiol. 44, 385–390 (1986).
[CrossRef] [PubMed]

1985 (1)

P. Weber, J. M. Greenberg, “Can spores survive in interstellar space,” Nature (London) 316, 403–407 (1985).
[CrossRef]

1974 (1)

L. Y. Santo, R. H. Doi, “Ultrastructural analysis during germination and outgrowth of Bacillus-Subtilis spores,” J. Bacteriol. 120, 475–481 (1974).
[PubMed]

1968 (1)

Abrams, B. H.

L. M. Bush, B. H. Abrams, A. Beall, C. C. Johnson, “Index case of fatal inhalational anthrax due to bioterrorism in the United States,” New Engl. J. Med. 345, 1607–1610 (2001).
[CrossRef] [PubMed]

Altboum, Z.

E. Elhanany, R. Barak, M. Fisher, D. Kobiler, Z. Altboum, “Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 15, 2110–2116 (2001).
[CrossRef] [PubMed]

Amiel, C.

L. Mariey, J. P. Signolle, C. Amiel, J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26, 151–159 (2001).
[CrossRef]

Anderson, G. P.

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

Arakawa, E. T.

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef] [PubMed]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 μm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

Barak, R.

E. Elhanany, R. Barak, M. Fisher, D. Kobiler, Z. Altboum, “Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 15, 2110–2116 (2001).
[CrossRef] [PubMed]

Barnes, J. R.

J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 372, 79–81 (1994).
[CrossRef]

Batt, C. A.

S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
[CrossRef]

Beall, A.

L. M. Bush, B. H. Abrams, A. Beall, C. C. Johnson, “Index case of fatal inhalational anthrax due to bioterrorism in the United States,” New Engl. J. Med. 345, 1607–1610 (2001).
[CrossRef] [PubMed]

Berger, R.

R. Berger, C. Gerber, J. K. Gimzewski, E. Meyer, H. J. Guntherodt, “Thermal analysis using a micromechanical calorimeter,” Appl. Phys. Lett. 69, 40–42 (1996).
[CrossRef]

Bienkowska, J.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Bozec, L.

L. Bozec, A. Hammiche, H. M. Pollock, M. Conroy, “Localized photothermal infrared spectroscopy using a proximal probe,” J. Appl. Phys. 90, 5159–5165 (2001).
[CrossRef]

Bronk, B. V.

S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
[CrossRef]

Broussard, L. A.

L. A. Broussard, “Biological agents: weapons of warfare and bioterrorism,” Mol. Diagn. 6, 323–333 (2001).

Bruno, J. G.

S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
[CrossRef]

J. G. Bruno, J. L. Kiel, “In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection,” Biosens. Bioelectron. 14, 457–464 (1999).
[CrossRef] [PubMed]

D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
[CrossRef]

Bush, L. M.

L. M. Bush, B. H. Abrams, A. Beall, C. C. Johnson, “Index case of fatal inhalational anthrax due to bioterrorism in the United States,” New Engl. J. Med. 345, 1607–1610 (2001).
[CrossRef] [PubMed]

Busscher, H. J.

H. C. van der Mei, D. Naumann, H. J. Busscher, “Grouping of Streptococcus mitis strains grown on different growth media by FT-IR,” Infrared Phys. Technol. 37, 561–564 (1996).
[CrossRef]

Calvey, E. M.

L. E. Rodriguez-Saona, F. M. Khambaty, F. S. Fry, E. M. Calvey, “Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy,” J. Agric. Food Chem. 49, 574–579 (2001).
[CrossRef] [PubMed]

Castro, A.

A. Castro, R. T. Okinaka, “Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution,” Analyst (London) 125, 9–11 (1999).
[CrossRef]

Chambers, J. P.

S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
[CrossRef]

Collier, R. J.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

R. Liddington, A. Pannifer, P. Hanna, R. J. Collier, “Crystallographic studies of the anthrax lethal toxin,” J. Appl. Microbiol. 87, 282–291 (1999).
[CrossRef] [PubMed]

Conroy, M.

L. Bozec, A. Hammiche, H. M. Pollock, M. Conroy, “Localized photothermal infrared spectroscopy using a proximal probe,” J. Appl. Phys. 90, 5159–5165 (2001).
[CrossRef]

Datskos, P. G.

P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
[CrossRef]

P. I. Oden, P. G. Datskos, T. Thundat, R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett. 69, 3277–3279 (1996).
[CrossRef]

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
[CrossRef]

Datskou, I.

P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
[CrossRef]

Davidson, P. T.

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

Doi, R. H.

L. Y. Santo, R. H. Doi, “Ultrastructural analysis during germination and outgrowth of Bacillus-Subtilis spores,” J. Bacteriol. 120, 475–481 (1974).
[PubMed]

Dworzanski, J. P.

A. P. Snyder, P. B. W. Smith, J. P. Dworzanski, H. L. C. Meuzelaar, “Pyrolysis-gas chromatology-mass spectrometry: detection of biological warfare agents,” in Mass Spectrometry for the Characterization of Microorganisms, C. Fenselau, ed., ACS Symposium Series No. 541 (Oxford U. Press, Oxford, UK, 1994), pp. 62–68.

Elhanany, E.

E. Elhanany, R. Barak, M. Fisher, D. Kobiler, Z. Altboum, “Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 15, 2110–2116 (2001).
[CrossRef] [PubMed]

Ezzell, J. W.

E. A. Henchal, J. D. Teska, G. V. Ludwig, D. R. Shoemaker, J. W. Ezzell, “Current laboratory methods for biological threat agent identification,” Clin. Lab. Med. 21, 661–667 (2001).
[PubMed]

Fisher, M.

E. Elhanany, R. Barak, M. Fisher, D. Kobiler, Z. Altboum, “Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 15, 2110–2116 (2001).
[CrossRef] [PubMed]

Foch, R. J.

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

Foegeding, P. M.

J. J. Quinlan, P. M. Foegeding, “Monoclonal antibodies for use in detection of Bacillus and Clostridium spores,” Appl. Environ. Microbiol. 63, 482–487 (1997).
[PubMed]

Fry, F. S.

L. E. Rodriguez-Saona, F. M. Khambaty, F. S. Fry, E. M. Calvey, “Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy,” J. Agric. Food Chem. 49, 574–579 (2001).
[CrossRef] [PubMed]

Gan, Y. D. M.

D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
[CrossRef] [PubMed]

Gattomenking, D. L.

D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
[CrossRef]

Gerber, C.

R. Berger, C. Gerber, J. K. Gimzewski, E. Meyer, H. J. Guntherodt, “Thermal analysis using a micromechanical calorimeter,” Appl. Phys. Lett. 69, 40–42 (1996).
[CrossRef]

J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 372, 79–81 (1994).
[CrossRef]

Gieray, R. A.

R. A. Gieray, P. T. A. Reilly, M. Yang, W. B. Whitten, J. M. Ramsey, “Real-time detection of individual airborne bacteria,” J. Microbiol. Methods 29, 191–199 (1997).
[CrossRef]

Gimzewski, J. K.

R. Berger, C. Gerber, J. K. Gimzewski, E. Meyer, H. J. Guntherodt, “Thermal analysis using a micromechanical calorimeter,” Appl. Phys. Lett. 69, 40–42 (1996).
[CrossRef]

J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 372, 79–81 (1994).
[CrossRef]

Goodacre, R.

R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, D. B. Kell, “Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks,” FEMS Microbiol. Lett. 140, 233–239 (1996).
[CrossRef] [PubMed]

Goode, M. T.

D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
[CrossRef]

Greenberg, J. M.

P. Weber, J. M. Greenberg, “Can spores survive in interstellar space,” Nature (London) 316, 403–407 (1985).
[CrossRef]

Guntherodt, H. J.

Y. Nakagawa, R. Schafer, H. J. Guntherodt, “Picojoule and submillisecond calorimetry with micromechanical probes,” Appl. Phys. Lett. 73, 2296–2298 (1998).
[CrossRef]

R. Berger, C. Gerber, J. K. Gimzewski, E. Meyer, H. J. Guntherodt, “Thermal analysis using a micromechanical calorimeter,” Appl. Phys. Lett. 69, 40–42 (1996).
[CrossRef]

Hammiche, A.

L. Bozec, A. Hammiche, H. M. Pollock, M. Conroy, “Localized photothermal infrared spectroscopy using a proximal probe,” J. Appl. Phys. 90, 5159–5165 (2001).
[CrossRef]

Hanna, P.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

R. Liddington, A. Pannifer, P. Hanna, R. J. Collier, “Crystallographic studies of the anthrax lethal toxin,” J. Appl. Microbiol. 87, 282–291 (1999).
[CrossRef] [PubMed]

Helm, D.

D. Helm, H. Labischinski, G. Schallehn, D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared-spectroscopy,” J. Gen. Microbiol. 137, 69–79 (1991).
[CrossRef] [PubMed]

D. Naumann, D. Helm, H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature (London) 351, 81–82 (1991).
[CrossRef]

D. Helm, H. Labischinski, D. Naumann, “Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach,” J. Microbiol. Methods 14, 127–142 (1991).
[CrossRef]

Henchal, E. A.

E. A. Henchal, J. D. Teska, G. V. Ludwig, D. R. Shoemaker, J. W. Ezzell, “Current laboratory methods for biological threat agent identification,” Clin. Lab. Med. 21, 661–667 (2001).
[PubMed]

Hieda, K.

N. Munakata, K. Hieda, K. Kobayashi, A. Ito, T. Ito, “Action spectra in ultraviolet wavelengths (150–250 nm) for inactivation and mutagenesis of Bacillus-subtilis spores obtained with synchrotron radiation,” Photochem. Photobiol. 44, 385–390 (1986).
[CrossRef] [PubMed]

Hunter, S. R.

P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
[CrossRef]

Iqbal, S. S.

S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
[CrossRef]

Irudayaraj, J.

J. Irudayaraj, H. Yang, S. Sakhamuri, “Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy,” J. Mol. Struct. 606, 181–188 (2002).
[CrossRef]

Ito, A.

N. Munakata, K. Hieda, K. Kobayashi, A. Ito, T. Ito, “Action spectra in ultraviolet wavelengths (150–250 nm) for inactivation and mutagenesis of Bacillus-subtilis spores obtained with synchrotron radiation,” Photochem. Photobiol. 44, 385–390 (1986).
[CrossRef] [PubMed]

Ito, T.

N. Munakata, K. Hieda, K. Kobayashi, A. Ito, T. Ito, “Action spectra in ultraviolet wavelengths (150–250 nm) for inactivation and mutagenesis of Bacillus-subtilis spores obtained with synchrotron radiation,” Photochem. Photobiol. 44, 385–390 (1986).
[CrossRef] [PubMed]

Ives, J. T.

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

Johnson, C. C.

L. M. Bush, B. H. Abrams, A. Beall, C. C. Johnson, “Index case of fatal inhalational anthrax due to bioterrorism in the United States,” New Engl. J. Med. 345, 1607–1610 (2001).
[CrossRef] [PubMed]

Katon, J. E.

J. E. Katon, “Applications of vibrational microspectroscopy to chemistry,” Vib. Spectrosc. 7, 201–229 (1994).
[CrossRef]

Kell, D. B.

R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, D. B. Kell, “Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks,” FEMS Microbiol. Lett. 140, 233–239 (1996).
[CrossRef] [PubMed]

Khambaty, F. M.

L. E. Rodriguez-Saona, F. M. Khambaty, F. S. Fry, E. M. Calvey, “Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy,” J. Agric. Food Chem. 49, 574–579 (2001).
[CrossRef] [PubMed]

Khare, B. N.

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef] [PubMed]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 μm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

Kiel, J. L.

J. G. Bruno, J. L. Kiel, “In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection,” Biosens. Bioelectron. 14, 457–464 (1999).
[CrossRef] [PubMed]

King, K. D.

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

Kobayashi, K.

N. Munakata, K. Hieda, K. Kobayashi, A. Ito, T. Ito, “Action spectra in ultraviolet wavelengths (150–250 nm) for inactivation and mutagenesis of Bacillus-subtilis spores obtained with synchrotron radiation,” Photochem. Photobiol. 44, 385–390 (1986).
[CrossRef] [PubMed]

Kobiler, D.

E. Elhanany, R. Barak, M. Fisher, D. Kobiler, Z. Altboum, “Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 15, 2110–2116 (2001).
[CrossRef] [PubMed]

Labischinski, H.

D. Helm, H. Labischinski, D. Naumann, “Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach,” J. Microbiol. Methods 14, 127–142 (1991).
[CrossRef]

D. Naumann, D. Helm, H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature (London) 351, 81–82 (1991).
[CrossRef]

D. Helm, H. Labischinski, G. Schallehn, D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared-spectroscopy,” J. Gen. Microbiol. 137, 69–79 (1991).
[CrossRef] [PubMed]

Lacy, D. B.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Lavrik, N.

P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
[CrossRef]

Legal, J. M.

J. M. Legal, M. Manfait, T. Theophanides, “Applications of FTIR spectroscopy in structural studies of cells and bacteria,” J. Mol. Struct. 242, 397–407 (1991).
[CrossRef]

Leppla, S. H.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Liddington, R.

R. Liddington, A. Pannifer, P. Hanna, R. J. Collier, “Crystallographic studies of the anthrax lethal toxin,” J. Appl. Microbiol. 87, 282–291 (1999).
[CrossRef] [PubMed]

Liddington, R. C.

R. C. Liddington, “A molecular full nelson,” Nature (London) 415, 373–374 (2002).
[CrossRef]

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Ligler, F. S.

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

Ludwig, G. V.

E. A. Henchal, J. D. Teska, G. V. Ludwig, D. R. Shoemaker, J. W. Ezzell, “Current laboratory methods for biological threat agent identification,” Clin. Lab. Med. 21, 661–667 (2001).
[PubMed]

Lytle, C. A.

D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
[CrossRef] [PubMed]

Manfait, M.

J. M. Legal, M. Manfait, T. Theophanides, “Applications of FTIR spectroscopy in structural studies of cells and bacteria,” J. Mol. Struct. 242, 397–407 (1991).
[CrossRef]

Mariey, L.

L. Mariey, J. P. Signolle, C. Amiel, J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26, 151–159 (2001).
[CrossRef]

Maruo, B.

B. Maruo, H. Yoshikawa, Bacillus subtilis: Molecular Biology and Industrial Application (Kodansha, Tokyo, 1989).

Mayo, M. W.

S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
[CrossRef]

Meuzelaar, H. L. C.

A. P. Snyder, P. B. W. Smith, J. P. Dworzanski, H. L. C. Meuzelaar, “Pyrolysis-gas chromatology-mass spectrometry: detection of biological warfare agents,” in Mass Spectrometry for the Characterization of Microorganisms, C. Fenselau, ed., ACS Symposium Series No. 541 (Oxford U. Press, Oxford, UK, 1994), pp. 62–68.

Meyer, E.

R. Berger, C. Gerber, J. K. Gimzewski, E. Meyer, H. J. Guntherodt, “Thermal analysis using a micromechanical calorimeter,” Appl. Phys. Lett. 69, 40–42 (1996).
[CrossRef]

Milham, M. E.

E. T. Arakawa, P. S. Tuminello, B. N. Khare, M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 μm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef] [PubMed]

Miller, M.

D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
[CrossRef]

Munakata, N.

N. Munakata, K. Hieda, K. Kobayashi, A. Ito, T. Ito, “Action spectra in ultraviolet wavelengths (150–250 nm) for inactivation and mutagenesis of Bacillus-subtilis spores obtained with synchrotron radiation,” Photochem. Photobiol. 44, 385–390 (1986).
[CrossRef] [PubMed]

Nakagawa, Y.

Y. Nakagawa, R. Schafer, H. J. Guntherodt, “Picojoule and submillisecond calorimetry with micromechanical probes,” Appl. Phys. Lett. 73, 2296–2298 (1998).
[CrossRef]

Naumann, D.

D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” Appl. Spectrosc. Rev. 36, 239–298 (2001).
[CrossRef]

T. Udelhoven, D. Naumann, J. Schmitt, “Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria,” Appl. Spectrosc. 54, 1471–1479 (2000).
[CrossRef]

H. C. van der Mei, D. Naumann, H. J. Busscher, “Grouping of Streptococcus mitis strains grown on different growth media by FT-IR,” Infrared Phys. Technol. 37, 561–564 (1996).
[CrossRef]

D. Helm, H. Labischinski, G. Schallehn, D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared-spectroscopy,” J. Gen. Microbiol. 137, 69–79 (1991).
[CrossRef] [PubMed]

D. Naumann, D. Helm, H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature (London) 351, 81–82 (1991).
[CrossRef]

D. Helm, H. Labischinski, D. Naumann, “Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach,” J. Microbiol. Methods 14, 127–142 (1991).
[CrossRef]

Oberreuter, H.

H. Oberreuter, H. Seiler, S. Scherer, “Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy,” Int. J. Syst. Evolutionary Microbiol. 52, 91–100 (2002).

Oden, P. I.

P. I. Oden, P. G. Datskos, T. Thundat, R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett. 69, 3277–3279 (1996).
[CrossRef]

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
[CrossRef]

Okinaka, R. T.

A. Castro, R. T. Okinaka, “Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution,” Analyst (London) 125, 9–11 (1999).
[CrossRef]

Page, G.

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

Pannifer, A.

R. Liddington, A. Pannifer, P. Hanna, R. J. Collier, “Crystallographic studies of the anthrax lethal toxin,” J. Appl. Microbiol. 87, 282–291 (1999).
[CrossRef] [PubMed]

Pannifer, A. D.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Park, S.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Peacock, A. D.

D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
[CrossRef] [PubMed]

Petosa, C.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Piceno, Y. M.

D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
[CrossRef] [PubMed]

Pollock, H. M.

L. Bozec, A. Hammiche, H. M. Pollock, M. Conroy, “Localized photothermal infrared spectroscopy using a proximal probe,” J. Appl. Phys. 90, 5159–5165 (2001).
[CrossRef]

Querry, M. R.

Quinlan, J. J.

J. J. Quinlan, P. M. Foegeding, “Monoclonal antibodies for use in detection of Bacillus and Clostridium spores,” Appl. Environ. Microbiol. 63, 482–487 (1997).
[PubMed]

Rajic, S.

P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
[CrossRef]

Ramsey, J. M.

R. A. Gieray, P. T. A. Reilly, M. Yang, W. B. Whitten, J. M. Ramsey, “Real-time detection of individual airborne bacteria,” J. Microbiol. Methods 29, 191–199 (1997).
[CrossRef]

Reilly, P. T. A.

R. A. Gieray, P. T. A. Reilly, M. Yang, W. B. Whitten, J. M. Ramsey, “Real-time detection of individual airborne bacteria,” J. Microbiol. Methods 29, 191–199 (1997).
[CrossRef]

Renatus, M.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Rodriguez-Saona, L. E.

L. E. Rodriguez-Saona, F. M. Khambaty, F. S. Fry, E. M. Calvey, “Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy,” J. Agric. Food Chem. 49, 574–579 (2001).
[CrossRef] [PubMed]

Rooney, P. J.

R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, D. B. Kell, “Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks,” FEMS Microbiol. Lett. 140, 233–239 (1996).
[CrossRef] [PubMed]

Rowland, J. J.

R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, D. B. Kell, “Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks,” FEMS Microbiol. Lett. 140, 233–239 (1996).
[CrossRef] [PubMed]

Sakhamuri, S.

J. Irudayaraj, H. Yang, S. Sakhamuri, “Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy,” J. Mol. Struct. 606, 181–188 (2002).
[CrossRef]

Santo, L. Y.

L. Y. Santo, R. H. Doi, “Ultrastructural analysis during germination and outgrowth of Bacillus-Subtilis spores,” J. Bacteriol. 120, 475–481 (1974).
[PubMed]

Schafer, R.

Y. Nakagawa, R. Schafer, H. J. Guntherodt, “Picojoule and submillisecond calorimetry with micromechanical probes,” Appl. Phys. Lett. 73, 2296–2298 (1998).
[CrossRef]

Schallehn, G.

D. Helm, H. Labischinski, G. Schallehn, D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared-spectroscopy,” J. Gen. Microbiol. 137, 69–79 (1991).
[CrossRef] [PubMed]

Scherer, S.

H. Oberreuter, H. Seiler, S. Scherer, “Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy,” Int. J. Syst. Evolutionary Microbiol. 52, 91–100 (2002).

Schmitt, J.

Schwarzenbacher, R.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Seiler, H.

H. Oberreuter, H. Seiler, S. Scherer, “Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy,” Int. J. Syst. Evolutionary Microbiol. 52, 91–100 (2002).

Senesac, L. R.

P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
[CrossRef]

Sepaniak, M. J.

P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
[CrossRef]

Setlow, P.

P. Setlow, Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (American Society for Microbiology, Washington, D.C., 1993).

Sharp, S. L.

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
[CrossRef]

Shoemaker, D. R.

E. A. Henchal, J. D. Teska, G. V. Ludwig, D. R. Shoemaker, J. W. Ezzell, “Current laboratory methods for biological threat agent identification,” Clin. Lab. Med. 21, 661–667 (2001).
[PubMed]

Signolle, J. P.

L. Mariey, J. P. Signolle, C. Amiel, J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26, 151–159 (2001).
[CrossRef]

Smith, C. A.

D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
[CrossRef] [PubMed]

Smith, P. B. W.

A. P. Snyder, P. B. W. Smith, J. P. Dworzanski, H. L. C. Meuzelaar, “Pyrolysis-gas chromatology-mass spectrometry: detection of biological warfare agents,” in Mass Spectrometry for the Characterization of Microorganisms, C. Fenselau, ed., ACS Symposium Series No. 541 (Oxford U. Press, Oxford, UK, 1994), pp. 62–68.

Snyder, A. P.

A. P. Snyder, P. B. W. Smith, J. P. Dworzanski, H. L. C. Meuzelaar, “Pyrolysis-gas chromatology-mass spectrometry: detection of biological warfare agents,” in Mass Spectrometry for the Characterization of Microorganisms, C. Fenselau, ed., ACS Symposium Series No. 541 (Oxford U. Press, Oxford, UK, 1994), pp. 62–68.

Stenger, D. A.

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

Stephenson, R. J.

J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 372, 79–81 (1994).
[CrossRef]

Stopa, P. J.

P. J. Stopa, “The flow cytometry of Bacillus anthracis spores revisited,” Cytometry 41, 237–244 (2000).
[PubMed]

Swartz, M. N.

M. N. Swartz, “Current concepts: recognition and management of anthrax—an update,” New Engl. J. Med. 345, 1621–1626 (2001).
[CrossRef]

Teska, J. D.

E. A. Henchal, J. D. Teska, G. V. Ludwig, D. R. Shoemaker, J. W. Ezzell, “Current laboratory methods for biological threat agent identification,” Clin. Lab. Med. 21, 661–667 (2001).
[PubMed]

Theophanides, T.

J. M. Legal, M. Manfait, T. Theophanides, “Applications of FTIR spectroscopy in structural studies of cells and bacteria,” J. Mol. Struct. 242, 397–407 (1991).
[CrossRef]

Thundat, T.

P. I. Oden, P. G. Datskos, T. Thundat, R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett. 69, 3277–3279 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
[CrossRef]

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
[CrossRef]

Timmins, E. M.

R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, D. B. Kell, “Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks,” FEMS Microbiol. Lett. 140, 233–239 (1996).
[CrossRef] [PubMed]

Tipple, C. A.

P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
[CrossRef]

Travert, J.

L. Mariey, J. P. Signolle, C. Amiel, J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26, 151–159 (2001).
[CrossRef]

Tuminello, P. S.

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm,” Appl. Opt. 36, 2818–2824 (1997).
[CrossRef] [PubMed]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 μm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

Udelhoven, T.

van der Mei, H. C.

H. C. van der Mei, D. Naumann, H. J. Busscher, “Grouping of Streptococcus mitis strains grown on different growth media by FT-IR,” Infrared Phys. Technol. 37, 561–564 (1996).
[CrossRef]

Wachter, E. A.

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
[CrossRef]

Warmack, R. J.

P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
[CrossRef]

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
[CrossRef]

P. I. Oden, P. G. Datskos, T. Thundat, R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett. 69, 3277–3279 (1996).
[CrossRef]

Weber, P.

P. Weber, J. M. Greenberg, “Can spores survive in interstellar space,” Nature (London) 316, 403–407 (1985).
[CrossRef]

Welland, M. E.

J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 372, 79–81 (1994).
[CrossRef]

Whelan, J. P.

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

White, D. C.

D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
[CrossRef] [PubMed]

Whitten, W. B.

R. A. Gieray, P. T. A. Reilly, M. Yang, W. B. Whitten, J. M. Ramsey, “Real-time detection of individual airborne bacteria,” J. Microbiol. Methods 29, 191–199 (1997).
[CrossRef]

Wimpee, M. H.

D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
[CrossRef] [PubMed]

Wong, T. Y.

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

Wrobel, J. M.

Wyatt, P. J.

Yang, H.

J. Irudayaraj, H. Yang, S. Sakhamuri, “Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy,” J. Mol. Struct. 606, 181–188 (2002).
[CrossRef]

Yang, M.

R. A. Gieray, P. T. A. Reilly, M. Yang, W. B. Whitten, J. M. Ramsey, “Real-time detection of individual airborne bacteria,” J. Microbiol. Methods 29, 191–199 (1997).
[CrossRef]

Yoshikawa, H.

B. Maruo, H. Yoshikawa, Bacillus subtilis: Molecular Biology and Industrial Application (Kodansha, Tokyo, 1989).

Yu, H.

D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
[CrossRef]

Zulich, A. W.

D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
[CrossRef]

Analyst (London) (1)

A. Castro, R. T. Okinaka, “Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution,” Analyst (London) 125, 9–11 (1999).
[CrossRef]

Appl. Environ. Microbiol. (1)

J. J. Quinlan, P. M. Foegeding, “Monoclonal antibodies for use in detection of Bacillus and Clostridium spores,” Appl. Environ. Microbiol. 63, 482–487 (1997).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

P. I. Oden, P. G. Datskos, T. Thundat, R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett. 69, 3277–3279 (1996).
[CrossRef]

P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69, 2986–2988 (1996).
[CrossRef]

Y. Nakagawa, R. Schafer, H. J. Guntherodt, “Picojoule and submillisecond calorimetry with micromechanical probes,” Appl. Phys. Lett. 73, 2296–2298 (1998).
[CrossRef]

R. Berger, C. Gerber, J. K. Gimzewski, E. Meyer, H. J. Guntherodt, “Thermal analysis using a micromechanical calorimeter,” Appl. Phys. Lett. 69, 40–42 (1996).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” Appl. Spectrosc. Rev. 36, 239–298 (2001).
[CrossRef]

Biosens. Bioelectron. (3)

D. L. Gattomenking, H. Yu, J. G. Bruno, M. T. Goode, M. Miller, A. W. Zulich, “Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor,” Biosens. Bioelectron. 10, 501–507 (1995).
[CrossRef]

J. G. Bruno, J. L. Kiel, “In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection,” Biosens. Bioelectron. 14, 457–464 (1999).
[CrossRef] [PubMed]

S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Biosens. Bioelectron. 15, 549–578 (2000).
[CrossRef]

Biospectroscopy (1)

E. T. Arakawa, P. S. Tuminello, B. N. Khare, M. E. Milham, “Optical properties of horseradish peroxidase from 0.13 to 2.5 μm,” Biospectroscopy 3, 73–80 (1997).
[CrossRef]

Clin. Lab. Med. (1)

E. A. Henchal, J. D. Teska, G. V. Ludwig, D. R. Shoemaker, J. W. Ezzell, “Current laboratory methods for biological threat agent identification,” Clin. Lab. Med. 21, 661–667 (2001).
[PubMed]

Cytometry (1)

P. J. Stopa, “The flow cytometry of Bacillus anthracis spores revisited,” Cytometry 41, 237–244 (2000).
[PubMed]

Environ. Sci. Technol. (1)

F. S. Ligler, G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, J. P. Whelan, “Remote sensing using an airborne biosensor,” Environ. Sci. Technol. 32, 2461–2466 (1998).
[CrossRef]

FEMS Microbiol. Lett. (1)

R. Goodacre, E. M. Timmins, P. J. Rooney, J. J. Rowland, D. B. Kell, “Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks,” FEMS Microbiol. Lett. 140, 233–239 (1996).
[CrossRef] [PubMed]

Infrared Phys. Technol. (1)

H. C. van der Mei, D. Naumann, H. J. Busscher, “Grouping of Streptococcus mitis strains grown on different growth media by FT-IR,” Infrared Phys. Technol. 37, 561–564 (1996).
[CrossRef]

Int. J. Syst. Evolutionary Microbiol. (1)

H. Oberreuter, H. Seiler, S. Scherer, “Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy,” Int. J. Syst. Evolutionary Microbiol. 52, 91–100 (2002).

J. Agric. Food Chem. (1)

L. E. Rodriguez-Saona, F. M. Khambaty, F. S. Fry, E. M. Calvey, “Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy,” J. Agric. Food Chem. 49, 574–579 (2001).
[CrossRef] [PubMed]

J. Appl. Microbiol. (1)

R. Liddington, A. Pannifer, P. Hanna, R. J. Collier, “Crystallographic studies of the anthrax lethal toxin,” J. Appl. Microbiol. 87, 282–291 (1999).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

L. Bozec, A. Hammiche, H. M. Pollock, M. Conroy, “Localized photothermal infrared spectroscopy using a proximal probe,” J. Appl. Phys. 90, 5159–5165 (2001).
[CrossRef]

J. Bacteriol. (1)

L. Y. Santo, R. H. Doi, “Ultrastructural analysis during germination and outgrowth of Bacillus-Subtilis spores,” J. Bacteriol. 120, 475–481 (1974).
[PubMed]

J. Gen. Microbiol. (1)

D. Helm, H. Labischinski, G. Schallehn, D. Naumann, “Classification and identification of bacteria by Fourier-transform infrared-spectroscopy,” J. Gen. Microbiol. 137, 69–79 (1991).
[CrossRef] [PubMed]

J. Microbiol. Methods (3)

R. A. Gieray, P. T. A. Reilly, M. Yang, W. B. Whitten, J. M. Ramsey, “Real-time detection of individual airborne bacteria,” J. Microbiol. Methods 29, 191–199 (1997).
[CrossRef]

D. Helm, H. Labischinski, D. Naumann, “Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach,” J. Microbiol. Methods 14, 127–142 (1991).
[CrossRef]

D. C. White, C. A. Lytle, Y. D. M. Gan, Y. M. Piceno, M. H. Wimpee, A. D. Peacock, C. A. Smith, “Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices,” J. Microbiol. Methods 48, 139–147 (2002).
[CrossRef] [PubMed]

J. Mol. Struct. (2)

J. M. Legal, M. Manfait, T. Theophanides, “Applications of FTIR spectroscopy in structural studies of cells and bacteria,” J. Mol. Struct. 242, 397–407 (1991).
[CrossRef]

J. Irudayaraj, H. Yang, S. Sakhamuri, “Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy,” J. Mol. Struct. 606, 181–188 (2002).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, I. Datskou, “Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices,” J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
[CrossRef]

Mol. Diagn. (1)

L. A. Broussard, “Biological agents: weapons of warfare and bioterrorism,” Mol. Diagn. 6, 323–333 (2001).

Nature (London) (5)

D. Naumann, D. Helm, H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature (London) 351, 81–82 (1991).
[CrossRef]

R. C. Liddington, “A molecular full nelson,” Nature (London) 415, 373–374 (2002).
[CrossRef]

P. Weber, J. M. Greenberg, “Can spores survive in interstellar space,” Nature (London) 316, 403–407 (1985).
[CrossRef]

A. D. Pannifer, T. Y. Wong, R. Schwarzenbacher, M. Renatus, C. Petosa, J. Bienkowska, D. B. Lacy, R. J. Collier, S. Park, S. H. Leppla, P. Hanna, R. C. Liddington, “Crystal structure of the anthrax lethal factor,” Nature (London) 414, 229–233 (2001).
[CrossRef]

J. R. Barnes, R. J. Stephenson, M. E. Welland, C. Gerber, J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 372, 79–81 (1994).
[CrossRef]

New Engl. J. Med. (2)

L. M. Bush, B. H. Abrams, A. Beall, C. C. Johnson, “Index case of fatal inhalational anthrax due to bioterrorism in the United States,” New Engl. J. Med. 345, 1607–1610 (2001).
[CrossRef] [PubMed]

M. N. Swartz, “Current concepts: recognition and management of anthrax—an update,” New Engl. J. Med. 345, 1621–1626 (2001).
[CrossRef]

Photochem. Photobiol. (1)

N. Munakata, K. Hieda, K. Kobayashi, A. Ito, T. Ito, “Action spectra in ultraviolet wavelengths (150–250 nm) for inactivation and mutagenesis of Bacillus-subtilis spores obtained with synchrotron radiation,” Photochem. Photobiol. 44, 385–390 (1986).
[CrossRef] [PubMed]

Rapid Commun. Mass Spectrom. (1)

E. Elhanany, R. Barak, M. Fisher, D. Kobiler, Z. Altboum, “Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 15, 2110–2116 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. A. Wachter, T. Thundat, P. I. Oden, R. J. Warmack, P. G. Datskos, S. L. Sharp, “Remote optical detection using microcantilevers,” Rev. Sci. Instrum. 67, 3434–3439 (1996).
[CrossRef]

Vib. Spectrosc. (2)

L. Mariey, J. P. Signolle, C. Amiel, J. Travert, “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics,” Vib. Spectrosc. 26, 151–159 (2001).
[CrossRef]

J. E. Katon, “Applications of vibrational microspectroscopy to chemistry,” Vib. Spectrosc. 7, 201–229 (1994).
[CrossRef]

Other (3)

A. P. Snyder, P. B. W. Smith, J. P. Dworzanski, H. L. C. Meuzelaar, “Pyrolysis-gas chromatology-mass spectrometry: detection of biological warfare agents,” in Mass Spectrometry for the Characterization of Microorganisms, C. Fenselau, ed., ACS Symposium Series No. 541 (Oxford U. Press, Oxford, UK, 1994), pp. 62–68.

P. Setlow, Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (American Society for Microbiology, Washington, D.C., 1993).

B. Maruo, H. Yoshikawa, Bacillus subtilis: Molecular Biology and Industrial Application (Kodansha, Tokyo, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used in the present studies for CalSpec measurements. PSD, position-sensitive photodetector.

Fig. 2
Fig. 2

Comparison of the CalSpec photothermal and conventional transmission-mode IR spectra of B. subtilis. The IR spectrum was measured on a pressed KBr pellet with the addition of powdered B. subtilis spores. The resulting surface concentration of the spores in the pellet was 1 mg cm-2. The CalSpec spectrum was obtained by use of a gold-coated silicon nitride microcantilever with 1.12 ng of B. subtilis that was sublimed in air from a stainless-steel boat at 230 °C.

Fig. 3
Fig. 3

Slow-scan spectra in the region of 4.5–8.0 μm (2222–1250 cm-1) show remarkable correlation between the respective features in the two spectra of B. subtilis obtained with CalSpec (solid curve) and conventional transmission IR spectroscopy (dashed curve).

Fig. 4
Fig. 4

Comparison of the CalSpec spectra of B. subtilis (solid curve) and B. cereus (dashed curve) reveals a clear difference between the two types of Bacillus spore. The spectrum B. cereus was obtained by use of a gold-coated silicon nitride microcantilever with 1.18 ng of B. cereus vapor that was sublimed in air from a stainless-steel boat at 210 °C. The spectrum of B. subtilis was obtained as described in Fig. 2.

Metrics