Abstract

A phase-shift-locked interferometer has been constructed for distance measurement. A phase shift produced by sawtooth-current modulation of a laser diode is locked to a phase difference preset by polarization optics that consists of a quarter-wave plate and polarizers through an electrical feedback technique. An optical path difference can be measured from the locked sawtooth-wave current amplitude in real time. The sensitivity of the interferometer is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Onodera, Y. Ishii, “Two-wavelength interferometry that uses a Fourier-transform method,” Appl. Opt. 37, 7988–7994 (1998).
    [CrossRef]
  2. A. Olsson, C. L. Tang, “Dynamic interferometry techniques for optical path length measurements,” Appl. Opt. 20, 3503–3507 (1981).
    [CrossRef] [PubMed]
  3. G. Beheim, K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21, 93–94 (1985).
    [CrossRef]
  4. T. Kubota, M. Nara, T. Yoshino, “Interferometer for measuring displacement and distance,” Opt. Lett. 12, 310–312 (1987).
    [CrossRef] [PubMed]
  5. H. Kikuta, K. Iwata, R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Appl. Opt. 25, 2976–2980 (1986).
    [CrossRef] [PubMed]
  6. M. Suematsu, M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis,” Appl. Opt. 30, 4046–4055 (1991).
    [CrossRef] [PubMed]
  7. H. J. Tiziani, B. France, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
    [CrossRef]
  8. S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
    [CrossRef] [PubMed]
  9. Y. Ishii, R. Onodera, T. Takahashi, “Phase-shifting interferometer for distance measurement using a tunable external-cavity laser diode,” in 18th Congress of the International Commission for Optics: Optics for the Next Millennium, T. Asakura, M. Chang, A. J. Glass, J. W. Goodman, A. H. Guenther, eds., Proc. SPIE3749, 436–437 (1999).
  10. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, “Optical frequency-domain imaging microprofilometry with a frequency-tunable liquid-crystal Fabry-Perot etalon device,” Appl. Opt. 38, 7063–7068 (1999).
    [CrossRef]
  11. Y. Ishii, “Wavelength-tunable laser-diode interferometer,” Opt. Rev. 6, 273–283 (1999).
    [CrossRef]
  12. T. Yoshino, M. Nara, S. Mnatzakanian, B. S. Lee, T. C. Strand, “Laser diode feedback interferometer for stabilization and displacement measurements,” Appl. Opt. 26, 892–897 (1987).
    [CrossRef] [PubMed]
  13. T. Suzuki, O. Sasaki, T. Maruyama, “Phase locked laser diode interferometry for surface profile measurement,” Appl. Opt. 28, 4407–4410 (1989).
    [CrossRef] [PubMed]
  14. T. Yoshino, H. Yamaguchi, “Closed-loop phase-shifting interferometry with a laser diode,” Opt. Lett. 23, 1576–1578 (1998).
    [CrossRef]
  15. R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, T. Yoshino, “Effect of laser-diode power change on optical heterodyne interferometry,” J. Lightwave Technol. 13, 675–681 (1995).
    [CrossRef]

1999 (2)

1998 (2)

1997 (2)

S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
[CrossRef] [PubMed]

H. J. Tiziani, B. France, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

1995 (1)

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, T. Yoshino, “Effect of laser-diode power change on optical heterodyne interferometry,” J. Lightwave Technol. 13, 675–681 (1995).
[CrossRef]

1991 (1)

1989 (1)

1987 (2)

1986 (1)

1985 (1)

G. Beheim, K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21, 93–94 (1985).
[CrossRef]

1981 (1)

Beheim, G.

G. Beheim, K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21, 93–94 (1985).
[CrossRef]

France, B.

H. J. Tiziani, B. France, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Fritsch, K.

G. Beheim, K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21, 93–94 (1985).
[CrossRef]

Haible, P.

H. J. Tiziani, B. France, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Ishii, Y.

Y. Ishii, “Wavelength-tunable laser-diode interferometer,” Opt. Rev. 6, 273–283 (1999).
[CrossRef]

R. Onodera, Y. Ishii, “Two-wavelength interferometry that uses a Fourier-transform method,” Appl. Opt. 37, 7988–7994 (1998).
[CrossRef]

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, T. Yoshino, “Effect of laser-diode power change on optical heterodyne interferometry,” J. Lightwave Technol. 13, 675–681 (1995).
[CrossRef]

Y. Ishii, R. Onodera, T. Takahashi, “Phase-shifting interferometer for distance measurement using a tunable external-cavity laser diode,” in 18th Congress of the International Commission for Optics: Optics for the Next Millennium, T. Asakura, M. Chang, A. J. Glass, J. W. Goodman, A. H. Guenther, eds., Proc. SPIE3749, 436–437 (1999).

Iwata, K.

Kikuta, H.

Kinoshita, M.

Kubota, T.

Kurokawa, T.

Kuwamura, S.

Lee, B. S.

Maruyama, T.

Mnatzakanian, S.

Nagata, R.

Nara, M.

Ohde, N.

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, T. Yoshino, “Effect of laser-diode power change on optical heterodyne interferometry,” J. Lightwave Technol. 13, 675–681 (1995).
[CrossRef]

Olsson, A.

Onodera, R.

R. Onodera, Y. Ishii, “Two-wavelength interferometry that uses a Fourier-transform method,” Appl. Opt. 37, 7988–7994 (1998).
[CrossRef]

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, T. Yoshino, “Effect of laser-diode power change on optical heterodyne interferometry,” J. Lightwave Technol. 13, 675–681 (1995).
[CrossRef]

Y. Ishii, R. Onodera, T. Takahashi, “Phase-shifting interferometer for distance measurement using a tunable external-cavity laser diode,” in 18th Congress of the International Commission for Optics: Optics for the Next Millennium, T. Asakura, M. Chang, A. J. Glass, J. W. Goodman, A. H. Guenther, eds., Proc. SPIE3749, 436–437 (1999).

Sasaki, O.

Strand, T. C.

Suematsu, M.

Suzuki, T.

Takahashi, T.

Y. Ishii, R. Onodera, T. Takahashi, “Phase-shifting interferometer for distance measurement using a tunable external-cavity laser diode,” in 18th Congress of the International Commission for Optics: Optics for the Next Millennium, T. Asakura, M. Chang, A. J. Glass, J. W. Goodman, A. H. Guenther, eds., Proc. SPIE3749, 436–437 (1999).

Takahashi, Y.

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, T. Yoshino, “Effect of laser-diode power change on optical heterodyne interferometry,” J. Lightwave Technol. 13, 675–681 (1995).
[CrossRef]

Takeda, M.

Tang, C. L.

Tiziani, H. J.

H. J. Tiziani, B. France, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Watanabe, Y.

Yago, H.

Yamaguchi, H.

Yamaguchi, I.

Yoshino, T.

Appl. Opt. (8)

Electron. Lett. (1)

G. Beheim, K. Fritsch, “Remote displacement measurements using a laser diode,” Electron. Lett. 21, 93–94 (1985).
[CrossRef]

J. Lightwave Technol. (1)

R. Onodera, Y. Ishii, N. Ohde, Y. Takahashi, T. Yoshino, “Effect of laser-diode power change on optical heterodyne interferometry,” J. Lightwave Technol. 13, 675–681 (1995).
[CrossRef]

J. Mod. Opt. (1)

H. J. Tiziani, B. France, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

Y. Ishii, “Wavelength-tunable laser-diode interferometer,” Opt. Rev. 6, 273–283 (1999).
[CrossRef]

Other (1)

Y. Ishii, R. Onodera, T. Takahashi, “Phase-shifting interferometer for distance measurement using a tunable external-cavity laser diode,” in 18th Congress of the International Commission for Optics: Optics for the Next Millennium, T. Asakura, M. Chang, A. J. Glass, J. W. Goodman, A. H. Guenther, eds., Proc. SPIE3749, 436–437 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a wavelength-modulated interferometer. Abbreviations are defined in text.

Fig. 2
Fig. 2

Experimental setup for a phase-shift-locked interferometer for distance measurement. Abbreviations are defined in text.

Fig. 3
Fig. 3

Block diagram of the electronic feedback scheme to lock the phase shift to the preset phase difference: OR, logical OR; other abbreviations defined in text.

Fig. 4
Fig. 4

Timing chart for the electronic feedback scheme in Fig. 3 for phase-shift locking.

Fig. 5
Fig. 5

Sawtooth-modulation current (upper, broken trace) and interference beat signals detected by PD a (middle trace) and PD b (lower trace).

Fig. 6
Fig. 6

Experimental result of the change in optical path difference caused by the displacement of the mechanical stage.

Fig. 7
Fig. 7

Real-time measurement of stepwise displacements given by the movement of the mirror attached to a stepper motor.

Fig. 8
Fig. 8

Experimental improvement in the sensitivity caused by reduction of the m value.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

It=A+B cosϕ0-δTt/T,
δT=2πlΔλ/λ2.
l=δT2πλ2Δλ.
dll=dδTδT+2dλλ-dΔλΔλ.
Dll=DδTδT+2Dλλ+DΔλΔλ,
V=a1 expjωt+ϕ110+a2 expjωt+ϕ201,
V=TPTQWPV,
TP=121-sin 2θ-cos 2θ-cos 2θ1+sin 2θ,
TQWP=121-j-j1,
I=|V|2 =|a1|2/2+|a2|2/2+a1a2 cosϕ1-ϕ2-2θ.
IAt=A+B cosϕ0-δTt/T,
IBt=A+B cosϕ0-δTt/T+Θ,
δT=2πlαim/λ2.
δT=mΘ.
l=mλ2/4αif,
Dll=2Dλλ+Difif,
FB=FS+FO.
1/if=4αl/mλ2,
FB=4Gαl/mλ2,

Metrics