Abstract

We report a new kind of compact and portable optical smoke sensor that uses an integrating cylinder as the light collector. Theoretical analysis shows that this smoke sensor can have high sensitivity and good linearity because a number of reflected lights participate in the measurement of smoke concentration. A smoke sensor has been constructed, and it has demonstrated improved sensitivity and linearity compared with the conventional direct-beam-based smoke sensor. Good agreement of theoretical and experimental results has been obtained.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Nostell, A. Roos, D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
    [CrossRef]
  2. W. E. Vargas, G. A. Niklasson, “Reflectance of pigmented polymer coatings: comparisons between measurements and radioactive transfer calculations,” Appl. Opt. 40, 85–94 (2001).
    [CrossRef]
  3. Labsphere, Inc., Guide to integrating sphere theory & application,” (Labsphere, North Sutton, N.H., 1997).
  4. M. Finkel, “Integrating sphere theory,” Opt. Commun. 2, 25–28 (1970).
    [CrossRef]
  5. J. Jacquez, H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45, 460–470 (1955).
    [CrossRef]
  6. J. D. Simpson, D. J. Drake, T. Speziale, “Light-integrating cylinder for inertial confinement fusion light balance measurements in mirror illumination systems,” Rev. Sci. Instrum. 57, 2951–2956 (1986).
    [CrossRef]
  7. L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations (Cambridge U. Press, New York, 1985).

2001 (1)

1999 (1)

P. Nostell, A. Roos, D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

1986 (1)

J. D. Simpson, D. J. Drake, T. Speziale, “Light-integrating cylinder for inertial confinement fusion light balance measurements in mirror illumination systems,” Rev. Sci. Instrum. 57, 2951–2956 (1986).
[CrossRef]

1970 (1)

M. Finkel, “Integrating sphere theory,” Opt. Commun. 2, 25–28 (1970).
[CrossRef]

1955 (1)

Delves, L. M.

L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations (Cambridge U. Press, New York, 1985).

Drake, D. J.

J. D. Simpson, D. J. Drake, T. Speziale, “Light-integrating cylinder for inertial confinement fusion light balance measurements in mirror illumination systems,” Rev. Sci. Instrum. 57, 2951–2956 (1986).
[CrossRef]

Finkel, M.

M. Finkel, “Integrating sphere theory,” Opt. Commun. 2, 25–28 (1970).
[CrossRef]

Jacquez, J.

Kuppenheim, H. F.

Mohamed, J. L.

L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations (Cambridge U. Press, New York, 1985).

Niklasson, G. A.

Nostell, P.

P. Nostell, A. Roos, D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Rönnow, D.

P. Nostell, A. Roos, D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Roos, A.

P. Nostell, A. Roos, D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Simpson, J. D.

J. D. Simpson, D. J. Drake, T. Speziale, “Light-integrating cylinder for inertial confinement fusion light balance measurements in mirror illumination systems,” Rev. Sci. Instrum. 57, 2951–2956 (1986).
[CrossRef]

Speziale, T.

J. D. Simpson, D. J. Drake, T. Speziale, “Light-integrating cylinder for inertial confinement fusion light balance measurements in mirror illumination systems,” Rev. Sci. Instrum. 57, 2951–2956 (1986).
[CrossRef]

Vargas, W. E.

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

M. Finkel, “Integrating sphere theory,” Opt. Commun. 2, 25–28 (1970).
[CrossRef]

Rev. Sci. Instrum. (2)

P. Nostell, A. Roos, D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

J. D. Simpson, D. J. Drake, T. Speziale, “Light-integrating cylinder for inertial confinement fusion light balance measurements in mirror illumination systems,” Rev. Sci. Instrum. 57, 2951–2956 (1986).
[CrossRef]

Other (2)

L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations (Cambridge U. Press, New York, 1985).

Labsphere, Inc., Guide to integrating sphere theory & application,” (Labsphere, North Sutton, N.H., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Distribution of illumination on the IC wall. Notation is defined in text.

Fig. 2
Fig. 2

Calculated dependence of wall illumination at distance z = 7 mm on reflection number n (empty IC).

Fig. 3
Fig. 3

Calculated dependence of wall illumination on distance z from the cylinder entrance for primary and steady-state light beams (empty IC).

Fig. 4
Fig. 4

Calculated dependence of wall illumination of 100-times-reflected light beam on distance z from the cylinder entrance as a parameter of evaporated stearic acid mass m.

Fig. 5
Fig. 5

Geometrical relationship of the detecting surface and IC.

Fig. 6
Fig. 6

Calculated variation of steady-state illumination with position on the detecting surface as a parameter of evaporated stearic acid mass m.

Fig. 7
Fig. 7

Calculated dependence of flux change ΔQ on evaporated stearic acid mass m as a parameter of cylinder length L and diameter d.

Fig. 8
Fig. 8

Two-types of optical smoke sensor: (a) with an integrating cylinder and (b) without an integrating cylinder. PD, photodiode.

Fig. 9
Fig. 9

Experimental system. PD, photodiode.

Fig. 10
Fig. 10

Measured attenuation coefficient versus evaporated stearic acid mass m.

Fig. 11
Fig. 11

Characteristics sensor (a) with and (b) without an IC.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

πB=r Pw0φ, z+Pwφ, z.
δF=BδSδΩ exp-σND=rπPw0φ, z+Pwφ, zda D · nˆD da D · nˆD3×exp-σND,
PwTotalφ, z=Pw0φ, z+Pwφ, z=Pw0φ, z+1π s exp-σNDPw0×φ, zr D · nˆD · nˆD4da+1π s exp-σNDPwφ, zr×D · nˆD · nˆD4da.
Pwφ, z=fφ, z+λ s Kφ, z, φ, zPw×φ, zda,
Kφ, z, φ, z=rD · nˆD · nˆexp-σNDD4,
fφ, z=1πs exp-σNDEw0×φ, zr D · nˆD · nˆD4da.
Pwφ, z=Pw1φ, z+λPw2φ, z++λn-1Pwnφ, z+,
Pw1φ, z=fφ, z, Pw2φ, z=s Kφ, z, φ, zPw1φ, zda,  Pwnφ, z=s Kφ, z, φ, zPwn-1φ, zda.
PDTotalyφ, zφ=PD0yφ, zφ+PD1yφ, zφ++EDnyφ, zφ+,
PD1yφ, zφ=1πs Pw0φ, zr D · nˆD · nˆD4×exp-σNDda,
PDTotalyφ, zφ=PD0yφ, zφ+1πs Pw0×φ, zr D · nˆD · nˆD4×exp-σNDda+1πs Pw1×φ, zr D · nˆD · nˆD4×exp-σNDda++1πs Pwn×φ, zr D · nˆD · nˆD4×exp-σNDda+ =PD0yφ, zφ+1πs PwTotal×φ, zr D · nˆD · nˆD4×exp-σNDda =PD0yφ, zφ+1πs PwTotal×φ, zr D · nˆD · nˆD4×exp-μmDda.
N=km/V,
I/I0=exp-σND, =exp-μmD,

Metrics