Abstract

Bragg gratings are recorded in doped and partially polymerized poly(methyl methacrylate) with green light (wavelength, 532 nm) in transmission geometry, and the gratings are read in reflection geometry with infrared light (wavelength, ∼1550 nm). Diffraction efficiencies of more than 99% with a wavelength bandwidth of ∼1 nm are obtained for single gratings with a typical length of 15 mm. Superposition of four gratings in a volume sample has been demonstrated as well. The material is promising for use in the fabrication of add-drop filters, attenuators, switches, and multiplexers-demultiplexers for optical networks that use wavelength division multiplexing.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Goralski, Optical Networking and WDM (McGraw-Hill, New York, 2001).
  2. J.-P. Laude, DWDM Fundamentals, Components, and Applications (Artech House, Boston, Mass., 2002).
  3. S. Breer, K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
    [CrossRef]
  4. G. A. Rakuljic, V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459–461 (1993).
    [CrossRef] [PubMed]
  5. R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
    [CrossRef]
  6. V. Leyva, G. A. Rakuljic, B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1081 (1994).
    [CrossRef]
  7. S. Breer, H. Vogt, I. Nee, K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
    [CrossRef]
  8. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  9. A. Othonos, K. Kalli, Fiber Bragg Gratings (Artech House, Boston, Mass., 1999).
  10. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  11. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [CrossRef]
  12. L. Eldada, R. Blomquist, L. W. Shacklette, M. J. McFarland, “High-performance polymeric componentry for telecom and datacom applications,” Opt. Eng. 39, 596–609 (2000).
    [CrossRef]
  13. H. Y. Liu, G. D. Peng, P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 824–826 (2001).
    [CrossRef]
  14. H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000).
    [CrossRef]
  15. C. C. Bowley, P. A. Kossyrev, G. P. Crawford, S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
    [CrossRef]
  16. N. Yoshimoto, S. Morino, M. Nakagawa, K. Ichimura, “Holographic Bragg gratings in a photoresponsive cross-linked polymer-liquid-crystal composite,” Opt. Lett. 27, 182–184 (2002).
    [CrossRef]
  17. J. Qi, M. DeSarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
    [CrossRef]
  18. P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
    [CrossRef]
  19. H. Franke, H. G. Festl, E. Krätzig, “Light-induced refractive index changes in PMMA films doped with styrene,” Colloid Polym. Sci. 262, 213–216 (1984).
    [CrossRef]
  20. H. Franke, “Optical recording of refractive-index patterns in doped poly(methyl methacrylate) films,” Appl. Opt. 23, 2729–2733 (1984).
    [CrossRef]
  21. R. A. Rupp, J. Hehmann, R. Matull, K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–302 (1990).
    [CrossRef] [PubMed]
  22. F. Havermeyer, S. F. Lyuksyutov, R. A. Rupp, P. S. H. Eckerlebe, J. Vollbrandt, “Nondestructive resolution of higher harmonics of light-induced volume gratings in PMMA with cold neutrons,” Phys. Rev. Lett. 80, 3272–3275 (1998).
    [CrossRef]
  23. F. Havermeyer, C. Pruner, R. A. Rupp, D. W. Schubert, E. Krätzig, “Absorption changes under UV illumination in doped PMMA,” Appl. Phys. B 72, 201–205 (2001).
    [CrossRef]
  24. H.-G. Elias, Grundlagen: Struktur—Synthese—Eigenschaften, Vol. 1 of Makromoleküle (Hüthig & Wepf Verlag, Basel, Switzerland, 1990).
  25. M. D. Lechner, K. Gehrke, E. H. Nordmeier, Makromolekulare Chemie (Birkhäuser Verlag, Basel, Switzerland, 1996).
  26. P. E. M. Allen, C. R. Patrick, Kinetics and Mechanisms of Polymerization Reactions (Halsted, New York, 1974).
  27. J. Marotz, “Holographic storage in sensitized polymethyl methacrylate blocks,” Appl. Phys. B 37, 181–187 (1985).
    [CrossRef]
  28. D. Panke, W. Wunderlich, “Bestimmung des freien Volumens von Polymethylmethacrylat aus Dichtemessungen,” Makromol. Chem. 194, 351–352 (1973).
    [CrossRef]
  29. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  30. S. H. Wemple, M. DiDomenico, “Optical dispersion and the structure of solids,” Phys. Rev. Lett. 23, 1156–1160 (1969).
    [CrossRef]
  31. F. Meseguer, C. Sanchez, “Piezobirefringence of PMMA: optical and mechanical relaxations and influence of temperature,” J. Mater. Sci. 15, 53–60 (1980).
    [CrossRef]
  32. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
    [CrossRef]
  33. T. Watanabe, N. Ooba, Y. Hida, M. Hikita, “Influence of humidity on refractive index of polymers for optical waveguides and its temperature dependence,” Appl. Phys. Lett. 72, 1533–1535 (1998).
    [CrossRef]

2002

J. Qi, M. DeSarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
[CrossRef]

N. Yoshimoto, S. Morino, M. Nakagawa, K. Ichimura, “Holographic Bragg gratings in a photoresponsive cross-linked polymer-liquid-crystal composite,” Opt. Lett. 27, 182–184 (2002).
[CrossRef]

2001

H. Y. Liu, G. D. Peng, P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 824–826 (2001).
[CrossRef]

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

F. Havermeyer, C. Pruner, R. A. Rupp, D. W. Schubert, E. Krätzig, “Absorption changes under UV illumination in doped PMMA,” Appl. Phys. B 72, 201–205 (2001).
[CrossRef]

2000

L. Eldada, R. Blomquist, L. W. Shacklette, M. J. McFarland, “High-performance polymeric componentry for telecom and datacom applications,” Opt. Eng. 39, 596–609 (2000).
[CrossRef]

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000).
[CrossRef]

1999

S. Breer, H. Vogt, I. Nee, K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

1998

T. Watanabe, N. Ooba, Y. Hida, M. Hikita, “Influence of humidity on refractive index of polymers for optical waveguides and its temperature dependence,” Appl. Phys. Lett. 72, 1533–1535 (1998).
[CrossRef]

F. Havermeyer, S. F. Lyuksyutov, R. A. Rupp, P. S. H. Eckerlebe, J. Vollbrandt, “Nondestructive resolution of higher harmonics of light-induced volume gratings in PMMA with cold neutrons,” Phys. Rev. Lett. 80, 3272–3275 (1998).
[CrossRef]

S. Breer, K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
[CrossRef]

1994

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

V. Leyva, G. A. Rakuljic, B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1081 (1994).
[CrossRef]

1993

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

G. A. Rakuljic, V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459–461 (1993).
[CrossRef] [PubMed]

1990

R. A. Rupp, J. Hehmann, R. Matull, K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–302 (1990).
[CrossRef] [PubMed]

1989

1985

J. Marotz, “Holographic storage in sensitized polymethyl methacrylate blocks,” Appl. Phys. B 37, 181–187 (1985).
[CrossRef]

1984

H. Franke, H. G. Festl, E. Krätzig, “Light-induced refractive index changes in PMMA films doped with styrene,” Colloid Polym. Sci. 262, 213–216 (1984).
[CrossRef]

H. Franke, “Optical recording of refractive-index patterns in doped poly(methyl methacrylate) films,” Appl. Opt. 23, 2729–2733 (1984).
[CrossRef]

1980

F. Meseguer, C. Sanchez, “Piezobirefringence of PMMA: optical and mechanical relaxations and influence of temperature,” J. Mater. Sci. 15, 53–60 (1980).
[CrossRef]

1973

D. Panke, W. Wunderlich, “Bestimmung des freien Volumens von Polymethylmethacrylat aus Dichtemessungen,” Makromol. Chem. 194, 351–352 (1973).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

S. H. Wemple, M. DiDomenico, “Optical dispersion and the structure of solids,” Phys. Rev. Lett. 23, 1156–1160 (1969).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Allen, P. E. M.

P. E. M. Allen, C. R. Patrick, Kinetics and Mechanisms of Polymerization Reactions (Halsted, New York, 1974).

Arizmendi, L.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Blomquist, R.

L. Eldada, R. Blomquist, L. W. Shacklette, M. J. McFarland, “High-performance polymeric componentry for telecom and datacom applications,” Opt. Eng. 39, 596–609 (2000).
[CrossRef]

Bowley, C. C.

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

Breer, S.

S. Breer, H. Vogt, I. Nee, K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

S. Breer, K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
[CrossRef]

Buse, K.

S. Breer, H. Vogt, I. Nee, K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

S. Breer, K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
[CrossRef]

Cabrera, J. M.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Chu, P. L.

H. Y. Liu, G. D. Peng, P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 824–826 (2001).
[CrossRef]

Crawford, G. P.

J. Qi, M. DeSarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

DeSarkar, M.

J. Qi, M. DeSarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

DiDomenico, M.

S. H. Wemple, M. DiDomenico, “Optical dispersion and the structure of solids,” Phys. Rev. Lett. 23, 1156–1160 (1969).
[CrossRef]

Eckerlebe, P. S. H.

F. Havermeyer, S. F. Lyuksyutov, R. A. Rupp, P. S. H. Eckerlebe, J. Vollbrandt, “Nondestructive resolution of higher harmonics of light-induced volume gratings in PMMA with cold neutrons,” Phys. Rev. Lett. 80, 3272–3275 (1998).
[CrossRef]

Eldada, L.

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

L. Eldada, R. Blomquist, L. W. Shacklette, M. J. McFarland, “High-performance polymeric componentry for telecom and datacom applications,” Opt. Eng. 39, 596–609 (2000).
[CrossRef]

Elias, H.-G.

H.-G. Elias, Grundlagen: Struktur—Synthese—Eigenschaften, Vol. 1 of Makromoleküle (Hüthig & Wepf Verlag, Basel, Switzerland, 1990).

Faris, S.

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

Festl, H. G.

H. Franke, H. G. Festl, E. Krätzig, “Light-induced refractive index changes in PMMA films doped with styrene,” Colloid Polym. Sci. 262, 213–216 (1984).
[CrossRef]

Franke, H.

H. Franke, H. G. Festl, E. Krätzig, “Light-induced refractive index changes in PMMA films doped with styrene,” Colloid Polym. Sci. 262, 213–216 (1984).
[CrossRef]

H. Franke, “Optical recording of refractive-index patterns in doped poly(methyl methacrylate) films,” Appl. Opt. 23, 2729–2733 (1984).
[CrossRef]

Frias, N. M.

H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000).
[CrossRef]

Gehrke, K.

M. D. Lechner, K. Gehrke, E. H. Nordmeier, Makromolekulare Chemie (Birkhäuser Verlag, Basel, Switzerland, 1996).

Glenn, W. H.

Goralski, W. J.

W. J. Goralski, Optical Networking and WDM (McGraw-Hill, New York, 2001).

Havermeyer, F.

F. Havermeyer, C. Pruner, R. A. Rupp, D. W. Schubert, E. Krätzig, “Absorption changes under UV illumination in doped PMMA,” Appl. Phys. B 72, 201–205 (2001).
[CrossRef]

F. Havermeyer, S. F. Lyuksyutov, R. A. Rupp, P. S. H. Eckerlebe, J. Vollbrandt, “Nondestructive resolution of higher harmonics of light-induced volume gratings in PMMA with cold neutrons,” Phys. Rev. Lett. 80, 3272–3275 (1998).
[CrossRef]

Hehmann, J.

R. A. Rupp, J. Hehmann, R. Matull, K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–302 (1990).
[CrossRef] [PubMed]

Hida, Y.

T. Watanabe, N. Ooba, Y. Hida, M. Hikita, “Influence of humidity on refractive index of polymers for optical waveguides and its temperature dependence,” Appl. Phys. Lett. 72, 1533–1535 (1998).
[CrossRef]

Hikita, M.

T. Watanabe, N. Ooba, Y. Hida, M. Hikita, “Influence of humidity on refractive index of polymers for optical waveguides and its temperature dependence,” Appl. Phys. Lett. 72, 1533–1535 (1998).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Ibel, K.

R. A. Rupp, J. Hehmann, R. Matull, K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–302 (1990).
[CrossRef] [PubMed]

Ichimura, K.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Kalli, K.

A. Othonos, K. Kalli, Fiber Bragg Gratings (Artech House, Boston, Mass., 1999).

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

Kawamura, T.

H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000).
[CrossRef]

Kawatsuki, N.

H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kossyrev, P. A.

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

Krätzig, E.

F. Havermeyer, C. Pruner, R. A. Rupp, D. W. Schubert, E. Krätzig, “Absorption changes under UV illumination in doped PMMA,” Appl. Phys. B 72, 201–205 (2001).
[CrossRef]

H. Franke, H. G. Festl, E. Krätzig, “Light-induced refractive index changes in PMMA films doped with styrene,” Colloid Polym. Sci. 262, 213–216 (1984).
[CrossRef]

Laude, J.-P.

J.-P. Laude, DWDM Fundamentals, Components, and Applications (Artech House, Boston, Mass., 2002).

Lechner, M. D.

M. D. Lechner, K. Gehrke, E. H. Nordmeier, Makromolekulare Chemie (Birkhäuser Verlag, Basel, Switzerland, 1996).

Leyva, V.

V. Leyva, G. A. Rakuljic, B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1081 (1994).
[CrossRef]

G. A. Rakuljic, V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459–461 (1993).
[CrossRef] [PubMed]

Lin, K.

P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
[CrossRef]

Liu, H. Y.

H. Y. Liu, G. D. Peng, P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 824–826 (2001).
[CrossRef]

Lubensky, T. C.

P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
[CrossRef]

Lyuksyutov, S. F.

F. Havermeyer, S. F. Lyuksyutov, R. A. Rupp, P. S. H. Eckerlebe, J. Vollbrandt, “Nondestructive resolution of higher harmonics of light-induced volume gratings in PMMA with cold neutrons,” Phys. Rev. Lett. 80, 3272–3275 (1998).
[CrossRef]

Mach, P.

P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Marotz, J.

J. Marotz, “Holographic storage in sensitized polymethyl methacrylate blocks,” Appl. Phys. B 37, 181–187 (1985).
[CrossRef]

Matull, R.

R. A. Rupp, J. Hehmann, R. Matull, K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–302 (1990).
[CrossRef] [PubMed]

McFarland, M. J.

L. Eldada, R. Blomquist, L. W. Shacklette, M. J. McFarland, “High-performance polymeric componentry for telecom and datacom applications,” Opt. Eng. 39, 596–609 (2000).
[CrossRef]

Megens, M.

P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
[CrossRef]

Meltz, G.

Meseguer, F.

F. Meseguer, C. Sanchez, “Piezobirefringence of PMMA: optical and mechanical relaxations and influence of temperature,” J. Mater. Sci. 15, 53–60 (1980).
[CrossRef]

Morey, W. W.

Morino, S.

Müller, R.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Nakagawa, M.

Nee, I.

S. Breer, H. Vogt, I. Nee, K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

Nordmeier, E. H.

M. D. Lechner, K. Gehrke, E. H. Nordmeier, Makromolekulare Chemie (Birkhäuser Verlag, Basel, Switzerland, 1996).

Norisada, H.

H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000).
[CrossRef]

O’Conner, B.

V. Leyva, G. A. Rakuljic, B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1081 (1994).
[CrossRef]

Ono, H.

H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000).
[CrossRef]

Ooba, N.

T. Watanabe, N. Ooba, Y. Hida, M. Hikita, “Influence of humidity on refractive index of polymers for optical waveguides and its temperature dependence,” Appl. Phys. Lett. 72, 1533–1535 (1998).
[CrossRef]

Othonos, A.

A. Othonos, K. Kalli, Fiber Bragg Gratings (Artech House, Boston, Mass., 1999).

Panke, D.

D. Panke, W. Wunderlich, “Bestimmung des freien Volumens von Polymethylmethacrylat aus Dichtemessungen,” Makromol. Chem. 194, 351–352 (1973).
[CrossRef]

Patrick, C. R.

P. E. M. Allen, C. R. Patrick, Kinetics and Mechanisms of Polymerization Reactions (Halsted, New York, 1974).

Peng, G. D.

H. Y. Liu, G. D. Peng, P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 824–826 (2001).
[CrossRef]

Pruner, C.

F. Havermeyer, C. Pruner, R. A. Rupp, D. W. Schubert, E. Krätzig, “Absorption changes under UV illumination in doped PMMA,” Appl. Phys. B 72, 201–205 (2001).
[CrossRef]

Qi, J.

J. Qi, M. DeSarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

Rakuljic, G. A.

V. Leyva, G. A. Rakuljic, B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1081 (1994).
[CrossRef]

G. A. Rakuljic, V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459–461 (1993).
[CrossRef] [PubMed]

Rupp, R. A.

F. Havermeyer, C. Pruner, R. A. Rupp, D. W. Schubert, E. Krätzig, “Absorption changes under UV illumination in doped PMMA,” Appl. Phys. B 72, 201–205 (2001).
[CrossRef]

F. Havermeyer, S. F. Lyuksyutov, R. A. Rupp, P. S. H. Eckerlebe, J. Vollbrandt, “Nondestructive resolution of higher harmonics of light-induced volume gratings in PMMA with cold neutrons,” Phys. Rev. Lett. 80, 3272–3275 (1998).
[CrossRef]

R. A. Rupp, J. Hehmann, R. Matull, K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–302 (1990).
[CrossRef] [PubMed]

Sanchez, C.

F. Meseguer, C. Sanchez, “Piezobirefringence of PMMA: optical and mechanical relaxations and influence of temperature,” J. Mater. Sci. 15, 53–60 (1980).
[CrossRef]

Santos, M. T.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Schubert, D. W.

F. Havermeyer, C. Pruner, R. A. Rupp, D. W. Schubert, E. Krätzig, “Absorption changes under UV illumination in doped PMMA,” Appl. Phys. B 72, 201–205 (2001).
[CrossRef]

Shacklette, L. W.

L. Eldada, R. Blomquist, L. W. Shacklette, M. J. McFarland, “High-performance polymeric componentry for telecom and datacom applications,” Opt. Eng. 39, 596–609 (2000).
[CrossRef]

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Vogt, H.

S. Breer, H. Vogt, I. Nee, K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

Vollbrandt, J.

F. Havermeyer, S. F. Lyuksyutov, R. A. Rupp, P. S. H. Eckerlebe, J. Vollbrandt, “Nondestructive resolution of higher harmonics of light-induced volume gratings in PMMA with cold neutrons,” Phys. Rev. Lett. 80, 3272–3275 (1998).
[CrossRef]

Warren, G. T.

J. Qi, M. DeSarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

Watanabe, T.

T. Watanabe, N. Ooba, Y. Hida, M. Hikita, “Influence of humidity on refractive index of polymers for optical waveguides and its temperature dependence,” Appl. Phys. Lett. 72, 1533–1535 (1998).
[CrossRef]

Weitz, D. A.

P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
[CrossRef]

Wemple, S. H.

S. H. Wemple, M. DiDomenico, “Optical dispersion and the structure of solids,” Phys. Rev. Lett. 23, 1156–1160 (1969).
[CrossRef]

Wiltzius, P.

P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
[CrossRef]

Wunderlich, W.

D. Panke, W. Wunderlich, “Bestimmung des freien Volumens von Polymethylmethacrylat aus Dichtemessungen,” Makromol. Chem. 194, 351–352 (1973).
[CrossRef]

Yamamoto, T.

H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000).
[CrossRef]

Yodh, A. G.

P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
[CrossRef]

Yoshimoto, N.

Appl. Opt.

Appl. Phys. B

F. Havermeyer, C. Pruner, R. A. Rupp, D. W. Schubert, E. Krätzig, “Absorption changes under UV illumination in doped PMMA,” Appl. Phys. B 72, 201–205 (2001).
[CrossRef]

J. Marotz, “Holographic storage in sensitized polymethyl methacrylate blocks,” Appl. Phys. B 37, 181–187 (1985).
[CrossRef]

S. Breer, K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
[CrossRef]

Appl. Phys. Lett.

V. Leyva, G. A. Rakuljic, B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1081 (1994).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

T. Watanabe, N. Ooba, Y. Hida, M. Hikita, “Influence of humidity on refractive index of polymers for optical waveguides and its temperature dependence,” Appl. Phys. Lett. 72, 1533–1535 (1998).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Colloid Polym. Sci.

H. Franke, H. G. Festl, E. Krätzig, “Light-induced refractive index changes in PMMA films doped with styrene,” Colloid Polym. Sci. 262, 213–216 (1984).
[CrossRef]

Electron. Lett.

S. Breer, H. Vogt, I. Nee, K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Y. Liu, G. D. Peng, P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13, 824–826 (2001).
[CrossRef]

J. Appl. Phys.

H. Ono, T. Kawamura, N. M. Frias, N. Kawatsuki, H. Norisada, T. Yamamoto, “Holographic Bragg grating generation in photorefractive polymer-dissolved liquid-crystal composites,” J. Appl. Phys. 88, 3853–3858 (2000).
[CrossRef]

J. Qi, M. DeSarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

J. Mater. Sci.

F. Meseguer, C. Sanchez, “Piezobirefringence of PMMA: optical and mechanical relaxations and influence of temperature,” J. Mater. Sci. 15, 53–60 (1980).
[CrossRef]

J. Phys. D

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Makromol. Chem.

D. Panke, W. Wunderlich, “Bestimmung des freien Volumens von Polymethylmethacrylat aus Dichtemessungen,” Makromol. Chem. 194, 351–352 (1973).
[CrossRef]

Opt. Eng.

L. Eldada, R. Blomquist, L. W. Shacklette, M. J. McFarland, “High-performance polymeric componentry for telecom and datacom applications,” Opt. Eng. 39, 596–609 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. E

P. Mach, P. Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, A. G. Yodh, “Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,” Phys. Rev. E 65, 031720 (2002).
[CrossRef]

Phys. Rev. Lett.

R. A. Rupp, J. Hehmann, R. Matull, K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–302 (1990).
[CrossRef] [PubMed]

F. Havermeyer, S. F. Lyuksyutov, R. A. Rupp, P. S. H. Eckerlebe, J. Vollbrandt, “Nondestructive resolution of higher harmonics of light-induced volume gratings in PMMA with cold neutrons,” Phys. Rev. Lett. 80, 3272–3275 (1998).
[CrossRef]

S. H. Wemple, M. DiDomenico, “Optical dispersion and the structure of solids,” Phys. Rev. Lett. 23, 1156–1160 (1969).
[CrossRef]

Other

H.-G. Elias, Grundlagen: Struktur—Synthese—Eigenschaften, Vol. 1 of Makromoleküle (Hüthig & Wepf Verlag, Basel, Switzerland, 1990).

M. D. Lechner, K. Gehrke, E. H. Nordmeier, Makromolekulare Chemie (Birkhäuser Verlag, Basel, Switzerland, 1996).

P. E. M. Allen, C. R. Patrick, Kinetics and Mechanisms of Polymerization Reactions (Halsted, New York, 1974).

W. J. Goralski, Optical Networking and WDM (McGraw-Hill, New York, 2001).

J.-P. Laude, DWDM Fundamentals, Components, and Applications (Artech House, Boston, Mass., 2002).

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

A. Othonos, K. Kalli, Fiber Bragg Gratings (Artech House, Boston, Mass., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Wave-vector diagram for illustration of a wavelength demultiplexer with two channels: k 1,in, k 2,in, wave vectors of the incoming light inside the sample; θin, angle of incidence of k 1,in and k 2,in; K 1, K 2, grating vectors with tilt angles ζ1 and ζ2, respectively; k 1,out, k 2,out, wave vectors of the diffracted beams inside the sample; θ1,out, θ2,out, angles inside the sample between k 1,out and k 2,out and the normal to the entrance surface; n, refractive index; λ1, λ2, wavelengths of light in vacuum.

Fig. 2
Fig. 2

Sketch of the cuvette used for prepolymerization of photosensitive PMMA samples.

Fig. 3
Fig. 3

Geometry for recording of holograms with visible light (recording wavelength, λ W ; recording angles, γ L and γ R ) and read out with infrared light (input angle, α; output angle, β). A Cartesian coordinate system (x, y, and z) is introduced.

Fig. 4
Fig. 4

(A) Absorption spectrum for the infrared wavelength range before illumination of a typical sample. (B) Absorption spectra for the infrared wavelength range from 1400 to 1650 nm before and after illumination of a typical sample.

Fig. 5
Fig. 5

Absorption spectrum for the visible wavelength range before and after illumination of a typical sample.

Fig. 6
Fig. 6

Temporal evolution of diffraction efficiency ηindir for a grating with a recording time of 1000 s. Diffraction efficiency ηindir is measured with the indirect method at an input angle of α = 0°. Solid curve, fit of Eq. (11) to the data.

Fig. 7
Fig. 7

Bragg wavelength λBragg versus time t after recording of a holographic grating. The solid line is a guide to the eye.

Fig. 8
Fig. 8

Diffraction efficiency ηdir as a function of readout wavelength λ R at an input angle of α = -1°. Diffraction efficiency ηdir is determined 14 days after recording. Solid curve, fit of Eq. (8) to the data.

Fig. 9
Fig. 9

Dependence of Bragg wavelength λBragg on Bragg angle αBragg for four multiplexed gratings. Measurement data are taken 5 days after recording. Solid curves, fits of Bragg formula (2) to the data with fit parameters ζ and nΛ, where ζ is the tilt angle of the grating and nΛ is the product of refractive index n and grating period Λ. Bragg angles outside and inside the material, αBragg and θBragg, are related through the Snellius law.

Fig. 10
Fig. 10

Intensity I trans of the transmitted light plotted against readout wavelength λ R at an input angle of αsel = -0.5° for four multiplexed gratings. Each grating is recorded for t S = 1000 s. The measurement is taken 11 days after recording.

Tables (2)

Tables Icon

Table 1 Dimensions of the PMMA Samples Useda

Tables Icon

Table 2 Data of the Four Superimposed Gratings Recorded in PMMA Sample P3a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

K=kS-kR,
cosζ-θBragg=λBragg2nΛ,
IlR*+Residue.
R*+MRM*
RMn*+MRMn+1*.
RMn*+RMm*RMn+mR
RMn*+RMm*RMn+RMm
η=1+1-ξ2/ν2sinh2 ν2-ξ2-1.
ξ=-Kd2ΔλλBragg+Δθ22θBragg+Δθ, ν=πdΔnλ cos θ,
ηBragg=tanh2 ν.
Δn=t/ba,

Metrics