Abstract

Three-dimensional (3D), multiwavelength near-infrared tomography has the potential to provide new physiological information about biological tissue function and pathological transformation. Fast and reliable measurements of multiwavelength data from multiple planes over a region of interest, together with adequate model-based nonlinear image reconstruction, form the major components of successful estimation of internal optical properties of the region. These images can then be used to examine the concentration of chromophores such as hemoglobin, deoxyhemoglobin, water, and lipids that in turn can serve to identify and characterize abnormalities located deep within the domain. We introduce and discuss a 3D modeling method and image reconstruction algorithm that is currently in place. Reconstructed images of optical properties are presented from simulated data, measured phantoms, and clinical data acquired from a breast cancer patient. It is shown that, with a relatively fast 3D inversion algorithm, useful images of optical absorption and scatter can be calculated with good separation and localization in all cases. It is also shown that, by use of the calculated optical absorption over a range of wavelengths, the oxygen saturation distribution of a tissue under investigation can be deduced from oxygenated and deoxygenated hemoglobin maps. With this method the reconstructed tumor from the breast cancer patient was found to have a higher oxy-deoxy hemoglobin concentration and also a higher oxygen saturation level than the background, indicating a ductal carcinoma that corresponds well to histology findings.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
    [CrossRef] [PubMed]
  2. B. W. Pogue, S. Geimer, T. McBride, S. Jiang, U. L. Osterberg, K. D. Paulsen, “3-D simulation of near-infrared diffusion in tissue: boundary conditions and geometry analysis for a finite element reconstruction algorithm,” Appl. Opt. 40, 588–600 (2001).
    [CrossRef]
  3. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
    [CrossRef] [PubMed]
  4. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
    [CrossRef]
  5. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
    [CrossRef] [PubMed]
  6. S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet in real time,” Opt. Express 4, 308–314 (1999), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
    [CrossRef]
  8. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
    [CrossRef]
  9. J. C. Schotland, V. A. Markel, “Inverse scattering with diffusing waves,” J. Opt. Soc. Am. A 18, 2767–2777 (2001).
    [CrossRef]
  10. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
    [CrossRef] [PubMed]
  11. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
    [CrossRef]
  12. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
    [CrossRef]
  13. S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  14. H. B. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
    [CrossRef] [PubMed]
  15. T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 514–525 (1999).
  16. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
    [CrossRef] [PubMed]
  17. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
    [CrossRef]
  18. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
    [CrossRef] [PubMed]
  19. Y. Painchaud, A. Mailloux, M. Morin, S. Verrault, P. Beaudry, “Time domain optical imaging: discrimination between absorption and scattering,” Appl. Opt. 38, 3686–3693 (1999).
    [CrossRef]
  20. S. B. Colak, M. B. van der Mark, G. W. t’Hooft, J. H. Hoogenraad, H. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
    [CrossRef]
  21. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  22. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  23. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  24. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  25. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. 2. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  26. P. P. B. Eggermort, G. T. Herman, A. Lent, “Iterative algorithms for large partitioned systems, with application to image reconstruction,” Linear Algebra Appl. 40, 37–67 (1981).
    [CrossRef]
  27. T. O. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. dissertation (Dartmouth College, Hanover, N.H.2001).
  28. J. Schoberl, “NETGEN—an automatic 3D tetrahedral mesh generator,” http://www.sfb013.uni-linz.ac.at/joachim/netgen/ .
  29. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
    [CrossRef] [PubMed]

2002

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

2001

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
[CrossRef]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

B. W. Pogue, S. Geimer, T. McBride, S. Jiang, U. L. Osterberg, K. D. Paulsen, “3-D simulation of near-infrared diffusion in tissue: boundary conditions and geometry analysis for a finite element reconstruction algorithm,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

J. C. Schotland, V. A. Markel, “Inverse scattering with diffusing waves,” J. Opt. Soc. Am. A 18, 2767–2777 (2001).
[CrossRef]

2000

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

1999

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

S. B. Colak, M. B. van der Mark, G. W. t’Hooft, J. H. Hoogenraad, H. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet in real time,” Opt. Express 4, 308–314 (1999), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Y. Painchaud, A. Mailloux, M. Morin, S. Verrault, P. Beaudry, “Time domain optical imaging: discrimination between absorption and scattering,” Appl. Opt. 38, 3686–3693 (1999).
[CrossRef]

1997

1996

1995

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. 2. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

1993

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

1988

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

1981

P. P. B. Eggermort, G. T. Herman, A. Lent, “Iterative algorithms for large partitioned systems, with application to image reconstruction,” Linear Algebra Appl. 40, 37–67 (1981).
[CrossRef]

Abele, C.

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

Andronica, R.

Arif, I.

Arridge, S. R.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. 2. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Barbour, R. L.

Barbour, S. S.

Baron, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Beaudry, P.

Bluestone, A.

Boas, D. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
[CrossRef]

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
[CrossRef]

Chance, B.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Colak, S. B.

S. B. Colak, M. B. van der Mark, G. W. t’Hooft, J. H. Hoogenraad, H. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Cope, M.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Dehghani, H.

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Delpy, D. T.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
[CrossRef]

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Eggermort, P. P. B.

P. P. B. Eggermort, G. T. Herman, A. Lent, “Iterative algorithms for large partitioned systems, with application to image reconstruction,” Linear Algebra Appl. 40, 37–67 (1981).
[CrossRef]

Eggert, J.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Fajardo, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Fantini, S.

Franceschini, M. A.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
[CrossRef]

Geimer, S.

Graber, H. L.

Gratton, E.

Hebden, J. C.

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Herman, G. T.

P. P. B. Eggermort, G. T. Herman, A. Lent, “Iterative algorithms for large partitioned systems, with application to image reconstruction,” Linear Algebra Appl. 40, 37–67 (1981).
[CrossRef]

Hielscher, A. H.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

Hillman, E. M. C.

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Hira, J.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Hoogenraad, J. H.

S. B. Colak, M. B. van der Mark, G. W. t’Hooft, J. H. Hoogenraad, H. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Hueber, D.

Iftimia, N.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Ito, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Jiang, H.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Jiang, H. B.

Jiang, S.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. Geimer, T. McBride, S. Jiang, U. L. Osterberg, K. D. Paulsen, “3-D simulation of near-infrared diffusion in tissue: boundary conditions and geometry analysis for a finite element reconstruction algorithm,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

Kaufman, H.

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
[CrossRef]

Klove, K.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Kuijpers, F. A.

S. B. Colak, M. B. van der Mark, G. W. t’Hooft, J. H. Hoogenraad, H. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Lent, A.

P. P. B. Eggermort, G. T. Herman, A. Lent, “Iterative algorithms for large partitioned systems, with application to image reconstruction,” Linear Algebra Appl. 40, 37–67 (1981).
[CrossRef]

Luo, H.

Mailloux, A.

Markel, V. A.

Maulik, D.

McBride, T.

McBride, T. O.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 514–525 (1999).

T. O. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. dissertation (Dartmouth College, Hanover, N.H.2001).

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
[CrossRef]

Morin, M.

Ntziachristos, V.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Oda, I.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oikawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. Geimer, T. McBride, S. Jiang, U. L. Osterberg, K. D. Paulsen, “3-D simulation of near-infrared diffusion in tissue: boundary conditions and geometry analysis for a finite element reconstruction algorithm,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 514–525 (1999).

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Painchaud, Y.

Patterson, M. S.

Paulsen, K. D.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. Geimer, T. McBride, S. Jiang, U. L. Osterberg, K. D. Paulsen, “3-D simulation of near-infrared diffusion in tissue: boundary conditions and geometry analysis for a finite element reconstruction algorithm,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 514–525 (1999).

Pei, Y.

Pogue, B. W.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. Geimer, T. McBride, S. Jiang, U. L. Osterberg, K. D. Paulsen, “3-D simulation of near-infrared diffusion in tissue: boundary conditions and geometry analysis for a finite element reconstruction algorithm,” Appl. Opt. 40, 588–600 (2001).
[CrossRef]

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 514–525 (1999).

Poplack, S. P.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Ramirez, N.

Reynolds, E.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Rosenfeld, W.

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Schmitz, C. H.

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Schotland, J. C.

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. 2. Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Soller, I.

Stankovic, M. R.

Stubblefield, P. G.

t’Hooft, G. W.

S. B. Colak, M. B. van der Mark, G. W. t’Hooft, J. H. Hoogenraad, H. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Tamaru, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tsunazawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

van der Linden, H. S.

S. B. Colak, M. B. van der Mark, G. W. t’Hooft, J. H. Hoogenraad, H. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

van der Mark, M. B.

S. B. Colak, M. B. van der Mark, G. W. t’Hooft, J. H. Hoogenraad, H. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Veenstra, H.

Verrault, S.

Wada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Wray, S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Wyatt, J. S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

Xu, Y.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Yamada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Yamashita, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Yodh, A. G.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
[CrossRef]

Zhong, S.

Appl. Opt.

Biochim. Biophys. Acta

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, E. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta 933, 184–192 (1988).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

S. B. Colak, M. B. van der Mark, G. W. t’Hooft, J. H. Hoogenraad, H. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

IEEE Signal Proc. Mag.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001).
[CrossRef]

IEEE Trans. Med. Imaging

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).
[CrossRef]

Inverse Probl.

S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt.

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Linear Algebra Appl.

P. P. B. Eggermort, G. T. Herman, A. Lent, “Iterative algorithms for large partitioned systems, with application to image reconstruction,” Linear Algebra Appl. 40, 37–67 (1981).
[CrossRef]

Med. Phys.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Radiology

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

Other

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Image reconstruction of continuously varying objects and simulated breast cancer lesions,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 514–525 (1999).

T. O. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. dissertation (Dartmouth College, Hanover, N.H.2001).

J. Schoberl, “NETGEN—an automatic 3D tetrahedral mesh generator,” http://www.sfb013.uni-linz.ac.at/joachim/netgen/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Meshes used for reconstruction of images from simulated data. (a) Cylindrical mesh used for the calculation of the simulated data. The cylinder had a radius of 43 mm and a height of 40 mm and contained a total of 8990 nodes, corresponding to 44,803 linear tetrahedral elements. (b) Cylindrical mesh used for the reconstruction. The cylinder had radius of 43 mm and a height of 40 mm and contained a total of 3112 nodes, corresponding to 14,873 linear tetrahedral elements.

Fig. 2
Fig. 2

Target and reconstructed images of μ a and μ s ′ from simulated data. Each slice represents a plane through the cylindrical mesh from the bottom of the cylinder (leftmost image) to the top (rightmost image). Reconstructed images are shown at the 9th iteration.

Fig. 3
Fig. 3

Outline of the cylindrical phantom used for the collection of data in the presence of a single black shiny marble suspended at x = 21 mm, y = 0 mm, z = 0 mm.

Fig. 4
Fig. 4

Plots of the averaged modeled data from each plane of measurements for (a) the homogeneous phantom and (b) the heterogeneous phantom, as shown in Fig. 3. Log amplitude and phase data are shown. Circles, measured results; crosses, modeled values based on the global μ a and μ s ′ estimates.

Fig. 5
Fig. 5

Reconstructed images at the tenth iteration of μ a and μ s ′ from measured phantom data. Each slice represents a plane through the cylindrical mesh from the bottom of the cylinder (leftmost image) to the top (rightmost image).

Fig. 6
Fig. 6

Conventional breast imaging of a left breast carcinoma. (a) Photographically magnified left mediolateral mammogram. Short arrows, poorly defined central tumor mass; long arrows, associated architectural distortion consisting of long lines radiating from the tumor. (b) Sonography in the longitudinal plane reveals a hypoechoic mass (arrows), and calipers (+) measure the maximal diameter of the tumor at 3.2 cm.

Fig. 7
Fig. 7

Diagram of the setup used for the data collection from the volunteer. Measurements were made one plane at a time, with the midplane positioned at the midline of the lesion. In each case the radius of the measurement plane was recorded, as well the separation between each plane. For mesh generation, 20 mm was allowed below and above the top and bottom planes of the fiber optic array.

Fig. 8
Fig. 8

Mesh used for the reconstruction of images from measured clinical data. The information shown in Fig. 7 was used for mesh generation. (a) Conical shaped mesh used for the calculation of the Jacobian, which contains 7898 nodes, corresponding to 38,725 linear tetrahedral elements. (b) Conical shaped mesh used for the reconstruction basis, which contains 3667 nodes, corresponding to 16,556 linear tetrahedral elements.

Fig. 9
Fig. 9

Reconstructed images of μ a at each wavelength from measured volunteer data; each slice represents a plane through the mesh, from the bottom near the nipple (leftmost image) to the top near the chest (rightmost image). The images are coronal views of the cross section through the breast at the tenth iteration at the wavelengths indicated.

Fig. 10
Fig. 10

Same as Fig. 9 but for μ s ′.

Fig. 11
Fig. 11

Property profile transects through the μ a and μ s ′ images shown in Figs. 9 and 10. In each case the third slice from the left, extending through the plane of interest at y = 0 mm, has been used. The position of the anomaly in these plots is at x = 27.5 mm.

Fig. 12
Fig. 12

Reconstructed images of Hb, HbO2, and SO2 from the calculated μ a images shown in Fig. 9.

Tables (2)

Tables Icon

Table 1 Computed Global Values of Absorption and Scattering Coefficients for Breast Dataa

Tables Icon

Table 2 Extinction Coefficients Used to Calculate Hb and HbO2 Concentrations from Absorption Values at Each Wavelength for Breast Data

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

- · κrΦr, ω+μar+iωcΦr, ω=q0r, ω,
Φγ+καnˆ · Φγ=0,
μˆa, κˆ=arg minμa,κy*-Fμa, κW2,
a=JTJJT+ρI-1b,
J=δ ln I1δκ1δ ln I1δκ2δ ln I1δκjδ ln I1δμa1δ ln I1δμa2δ ln I1δμajδθ1δκ1δθ1δκ2δθ1δκjδθ1δμa1δθ1δμa2δθ1δμajδ ln I2δκ1δ ln I2δκ2δ ln I2δκjδ ln I2δμa1δ ln I2δμa2δ ln I2δμajδθ2δκ1δθ2δκ2δθ2δκjδθ2δμa1δθ2δμa2δθ2δμajδ ln ISδκ1δ ln ISδκ2δ ln ISδκjδ ln ISδμa1δ ln ISδμa2δ ln ISδμajδθSδκ1δθSδκ2δθSδκj;δθSδμa1δθSδμa2δθSδμaj,
datameand=1NSn=1NS datan,d,
datacalibratedanom=datameasuredanom-datameasuredhomog-datacalculatedhomog-dataoffsetanom-dataoffsethomog.
μaλi=n=1N nλicn,
HbjHbO2j=μaj,λiHbλiHbO2λi,

Metrics