Abstract

Methods for local photon path length and optical properties estimation, based on measured and simulated diffuse reflectance within 2 mm from the light source, are proposed and evaluated in vivo on Caucasian human skin. The accuracy of the methods was good (2%–7%) for path length and reduced scattering but poor for absorption estimation. Reduced scattering and absorption were systematically lower in the fingertip than in the forearm skin (633 nm). A maximum intrasite and interindividual variation of ∼35% in an average photon path length was found. The methodology was applied in laser Doppler flowmetry, where path-length normalization of the estimated perfusion removed the optical property dependency.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  2. W.-F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 275–303.
  3. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
    [CrossRef]
  4. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
    [CrossRef]
  5. F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999).
    [CrossRef]
  6. J. S. Dam, P. E. Andersen, T. Dalgaard, P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
    [CrossRef]
  7. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
    [CrossRef]
  8. R. A. J. Groenhuis, J. J. ten Bosch, H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
    [CrossRef] [PubMed]
  9. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
    [CrossRef] [PubMed]
  10. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
    [CrossRef]
  11. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
    [CrossRef] [PubMed]
  12. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Wilke, A. J. Durkin, M. N. Ediger, “Determination of optical properties in highly attenuating media with an endoscope-compatible reflectance approach,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 212–221 (2002).
  13. G. E. Nilsson, T. Tenland, P. Å. Öberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27, 597–604 (1980).
    [CrossRef] [PubMed]
  14. G. E. Nilsson, M. Arildsson, M. Linden, “Recent development in laser Doppler perfusion imaging for two-dimensional tissue blood flow mapping,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 109–119.
  15. G. E. Nilsson, A. Jakobsson, K. Wårdell, “Tissue perfusion monitoring and imaging by coherent light scattering,” in Bioptics: Optics in Biomedicine and Environmental Sciences, O. D. D. Soares, A. M. Scheggi, eds., Proc. SPIE1524, 90–109 (1992).
  16. R. F. Bonner, R. Nossal, “Principles of Laser-Doppler Flowmetry,” in Laser-Doppler Blood Flowmetry, A. P. Shepherd, P. Å. Öberg, eds. (Kluwer Academic, Boston, Mass., 1990), pp. 17–45.
  17. R. F. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [CrossRef] [PubMed]
  18. G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. Biol. Eng. Comput. 22, 343–348 (1984).
    [CrossRef] [PubMed]
  19. H. Nilsson, M. Larsson, G. E. Nilsson, T. Strömberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
    [CrossRef] [PubMed]
  20. R. Nossal, R. F. Bonner, G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28, 2238–2244 (1989).
    [CrossRef] [PubMed]
  21. M. Larsson, W. Steenbergen, T. Strömberg, “Influence of optical properties and fibre separation on laser Doppler flowmetry,” J. Biomed. Opt. 7, 236–243 (2001).
    [CrossRef]
  22. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [CrossRef] [PubMed]
  23. W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 131–191.
  24. F. F. M. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34, 6595–6611 (1995).
    [CrossRef] [PubMed]
  25. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  26. V. V. Tuchin, “Optical properties of tissues with strong (multiple) scattering,” in Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of SPIE Tutorial Texts (SPIE Press, Bellingham, Wash., 2000), pp. 13–33.
  27. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
    [CrossRef] [PubMed]
  28. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical proerties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
    [CrossRef] [PubMed]
  29. G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
    [CrossRef] [PubMed]
  30. T. Tenland, E. G. Salerud, G. E. Nilsson, P. Å. Öberg, “Spatial and temporal variations in human skin blood flow,” Int. J. Microcirc. Clin. Exp. 2, 81–90 (1983).
    [PubMed]
  31. I. M. Braverman, A. Keh, D. Goldminz, “Correlation of laser Doppler wave patterns with underlying microvascular anatomy,” J. Invest. Dermatol. 95, 283–286 (1990).
    [CrossRef] [PubMed]
  32. S. L. Jacques, “Skin optics,” 1998; http://omlc.ogi.edu/news/jan98/skinoptics.html .
  33. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
    [CrossRef] [PubMed]
  34. I. M. Braverman, “The cutaneous microcirculation,” J. Invest. Dermatol. Symp. Proc. 5, 3–9 (2000).
    [CrossRef]

2002 (1)

H. Nilsson, M. Larsson, G. E. Nilsson, T. Strömberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (2)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

I. M. Braverman, “The cutaneous microcirculation,” J. Invest. Dermatol. Symp. Proc. 5, 3–9 (2000).
[CrossRef]

1999 (3)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1995 (1)

1993 (1)

1990 (3)

I. M. Braverman, A. Keh, D. Goldminz, “Correlation of laser Doppler wave patterns with underlying microvascular anatomy,” J. Invest. Dermatol. 95, 283–286 (1990).
[CrossRef] [PubMed]

J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
[CrossRef] [PubMed]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

1989 (3)

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

R. Nossal, R. F. Bonner, G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28, 2238–2244 (1989).
[CrossRef] [PubMed]

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

1984 (1)

G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. Biol. Eng. Comput. 22, 343–348 (1984).
[CrossRef] [PubMed]

1983 (2)

T. Tenland, E. G. Salerud, G. E. Nilsson, P. Å. Öberg, “Spatial and temporal variations in human skin blood flow,” Int. J. Microcirc. Clin. Exp. 2, 81–90 (1983).
[PubMed]

R. A. J. Groenhuis, J. J. ten Bosch, H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
[CrossRef] [PubMed]

1981 (1)

1980 (2)

G. E. Nilsson, T. Tenland, P. Å. Öberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27, 597–604 (1980).
[CrossRef] [PubMed]

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

1941 (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Aarnoudse, J. G.

Andersen, P. E.

Andersson-Engels, S.

Arildsson, M.

G. E. Nilsson, M. Arildsson, M. Linden, “Recent development in laser Doppler perfusion imaging for two-dimensional tissue blood flow mapping,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 109–119.

Aruna, P.

Bennett, C. L.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Wilke, A. J. Durkin, M. N. Ediger, “Determination of optical properties in highly attenuating media with an endoscope-compatible reflectance approach,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 212–221 (2002).

Bevilacqua, F.

Bigio, I. J.

Bonner, R. F.

Boyer, J.

Braverman, I. M.

I. M. Braverman, “The cutaneous microcirculation,” J. Invest. Dermatol. Symp. Proc. 5, 3–9 (2000).
[CrossRef]

I. M. Braverman, A. Keh, D. Goldminz, “Correlation of laser Doppler wave patterns with underlying microvascular anatomy,” J. Invest. Dermatol. 95, 283–286 (1990).
[CrossRef] [PubMed]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

Cheong, W.-F.

W.-F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 275–303.

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Dalgaard, T.

Dam, J. S.

Dassel, A. C. M.

de Mul, F. F. M.

Depeursinge, C.

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Durkin, A. J.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Wilke, A. J. Durkin, M. N. Ediger, “Determination of optical properties in highly attenuating media with an endoscope-compatible reflectance approach,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 212–221 (2002).

Ediger, M. N.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Wilke, A. J. Durkin, M. N. Ediger, “Determination of optical properties in highly attenuating media with an endoscope-compatible reflectance approach,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 212–221 (2002).

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

Fabricius, P. E.

Ferwerda, H. A.

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Fuselier, T.

Goldminz, D.

I. M. Braverman, A. Keh, D. Goldminz, “Correlation of laser Doppler wave patterns with underlying microvascular anatomy,” J. Invest. Dermatol. 95, 283–286 (1990).
[CrossRef] [PubMed]

Graaff, R.

Greenstein, J. L.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Greve, J.

Groenhuis, R. A. J.

Gross, J. D.

Harmsma, P. J.

Henyey, L. G.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Hibst, R.

Jacques, S. L.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Jakobsson, A.

G. E. Nilsson, A. Jakobsson, K. Wårdell, “Tissue perfusion monitoring and imaging by coherent light scattering,” in Bioptics: Optics in Biomedicine and Environmental Sciences, O. D. D. Soares, A. M. Scheggi, eds., Proc. SPIE1524, 90–109 (1992).

Johnson, T. M.

Keh, A.

I. M. Braverman, A. Keh, D. Goldminz, “Correlation of laser Doppler wave patterns with underlying microvascular anatomy,” J. Invest. Dermatol. 95, 283–286 (1990).
[CrossRef] [PubMed]

Kienle, A.

Koelink, M. H.

Kok, M. L.

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

Larsson, M.

H. Nilsson, M. Larsson, G. E. Nilsson, T. Strömberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

M. Larsson, W. Steenbergen, T. Strömberg, “Influence of optical properties and fibre separation on laser Doppler flowmetry,” J. Biomed. Opt. 7, 236–243 (2001).
[CrossRef]

Lilge, L.

Linden, M.

G. E. Nilsson, M. Arildsson, M. Linden, “Recent development in laser Doppler perfusion imaging for two-dimensional tissue blood flow mapping,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 109–119.

Marquet, P.

Matchette, L. S.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Wilke, A. J. Durkin, M. N. Ediger, “Determination of optical properties in highly attenuating media with an endoscope-compatible reflectance approach,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 212–221 (2002).

Mourant, J. R.

Nilsson, G. E.

H. Nilsson, M. Larsson, G. E. Nilsson, T. Strömberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. Biol. Eng. Comput. 22, 343–348 (1984).
[CrossRef] [PubMed]

T. Tenland, E. G. Salerud, G. E. Nilsson, P. Å. Öberg, “Spatial and temporal variations in human skin blood flow,” Int. J. Microcirc. Clin. Exp. 2, 81–90 (1983).
[PubMed]

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

G. E. Nilsson, T. Tenland, P. Å. Öberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27, 597–604 (1980).
[CrossRef] [PubMed]

G. E. Nilsson, M. Arildsson, M. Linden, “Recent development in laser Doppler perfusion imaging for two-dimensional tissue blood flow mapping,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 109–119.

G. E. Nilsson, A. Jakobsson, K. Wårdell, “Tissue perfusion monitoring and imaging by coherent light scattering,” in Bioptics: Optics in Biomedicine and Environmental Sciences, O. D. D. Soares, A. M. Scheggi, eds., Proc. SPIE1524, 90–109 (1992).

Nilsson, H.

H. Nilsson, M. Larsson, G. E. Nilsson, T. Strömberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

Nossal, R.

Öberg, P. Å.

T. Tenland, E. G. Salerud, G. E. Nilsson, P. Å. Öberg, “Spatial and temporal variations in human skin blood flow,” Int. J. Microcirc. Clin. Exp. 2, 81–90 (1983).
[PubMed]

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

G. E. Nilsson, T. Tenland, P. Å. Öberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27, 597–604 (1980).
[CrossRef] [PubMed]

Patterson, M. S.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Pedersen, C. B.

Pfefer, T. J.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Wilke, A. J. Durkin, M. N. Ediger, “Determination of optical properties in highly attenuating media with an endoscope-compatible reflectance approach,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 212–221 (2002).

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

Piguet, D.

Salerud, E. G.

T. Tenland, E. G. Salerud, G. E. Nilsson, P. Å. Öberg, “Spatial and temporal variations in human skin blood flow,” Int. J. Microcirc. Clin. Exp. 2, 81–90 (1983).
[PubMed]

Schmitt, J. M.

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

Star, W. M.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 131–191.

Steenbergen, W.

M. Larsson, W. Steenbergen, T. Strömberg, “Influence of optical properties and fibre separation on laser Doppler flowmetry,” J. Biomed. Opt. 7, 236–243 (2001).
[CrossRef]

Steiner, R.

Sterenborg, H. J. C. M.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Strömberg, T.

H. Nilsson, M. Larsson, G. E. Nilsson, T. Strömberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

M. Larsson, W. Steenbergen, T. Strömberg, “Influence of optical properties and fibre separation on laser Doppler flowmetry,” J. Biomed. Opt. 7, 236–243 (2001).
[CrossRef]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

ten Bosch, J. J.

Tenland, T.

T. Tenland, E. G. Salerud, G. E. Nilsson, P. Å. Öberg, “Spatial and temporal variations in human skin blood flow,” Int. J. Microcirc. Clin. Exp. 2, 81–90 (1983).
[PubMed]

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

G. E. Nilsson, T. Tenland, P. Å. Öberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27, 597–604 (1980).
[CrossRef] [PubMed]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

Tuchin, V. V.

V. V. Tuchin, “Optical properties of tissues with strong (multiple) scattering,” in Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of SPIE Tutorial Texts (SPIE Press, Bellingham, Wash., 2000), pp. 13–33.

van Gemert, M. J. C.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Walker, E. C.

Wall, R. T.

Wårdell, K.

G. E. Nilsson, A. Jakobsson, K. Wårdell, “Tissue perfusion monitoring and imaging by coherent light scattering,” in Bioptics: Optics in Biomedicine and Environmental Sciences, O. D. D. Soares, A. M. Scheggi, eds., Proc. SPIE1524, 90–109 (1992).

Weiss, G. H.

Wilke, J. A.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Wilke, A. J. Durkin, M. N. Ediger, “Determination of optical properties in highly attenuating media with an endoscope-compatible reflectance approach,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 212–221 (2002).

Wilson, B. C.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Zhou, G. X.

Zijlstra, W. G.

Appl. Opt. (10)

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

J. S. Dam, P. E. Andersen, T. Dalgaard, P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
[CrossRef]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
[CrossRef]

R. A. J. Groenhuis, J. J. ten Bosch, H. A. Ferwerda, “Scattering and absorption of turbid materials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

R. F. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
[CrossRef] [PubMed]

R. Nossal, R. F. Bonner, G. H. Weiss, “Influence of path length on remote optical sensing of properties of biological tissue,” Appl. Opt. 28, 2238–2244 (1989).
[CrossRef] [PubMed]

F. F. M. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34, 6595–6611 (1995).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical proerties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

Astrophys. J. (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmission of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (4)

G. E. Nilsson, T. Tenland, P. Å. Öberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27, 597–604 (1980).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues. I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. 27, 12–19 (1980).
[CrossRef] [PubMed]

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Int. J. Microcirc. Clin. Exp. (1)

T. Tenland, E. G. Salerud, G. E. Nilsson, P. Å. Öberg, “Spatial and temporal variations in human skin blood flow,” Int. J. Microcirc. Clin. Exp. 2, 81–90 (1983).
[PubMed]

J. Biomed. Opt. (2)

H. Nilsson, M. Larsson, G. E. Nilsson, T. Strömberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

M. Larsson, W. Steenbergen, T. Strömberg, “Influence of optical properties and fibre separation on laser Doppler flowmetry,” J. Biomed. Opt. 7, 236–243 (2001).
[CrossRef]

J. Invest. Dermatol. (1)

I. M. Braverman, A. Keh, D. Goldminz, “Correlation of laser Doppler wave patterns with underlying microvascular anatomy,” J. Invest. Dermatol. 95, 283–286 (1990).
[CrossRef] [PubMed]

J. Invest. Dermatol. Symp. Proc. (1)

I. M. Braverman, “The cutaneous microcirculation,” J. Invest. Dermatol. Symp. Proc. 5, 3–9 (2000).
[CrossRef]

J. Opt. Soc. Am. A (2)

Med. Biol. Eng. Comput. (1)

G. E. Nilsson, “Signal processor for laser Doppler tissue flowmeters,” Med. Biol. Eng. Comput. 22, 343–348 (1984).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1–2), 26–40 (2000).
[CrossRef]

Phys. Med. Biol. (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Other (8)

S. L. Jacques, “Skin optics,” 1998; http://omlc.ogi.edu/news/jan98/skinoptics.html .

W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 131–191.

V. V. Tuchin, “Optical properties of tissues with strong (multiple) scattering,” in Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of SPIE Tutorial Texts (SPIE Press, Bellingham, Wash., 2000), pp. 13–33.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Wilke, A. J. Durkin, M. N. Ediger, “Determination of optical properties in highly attenuating media with an endoscope-compatible reflectance approach,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 212–221 (2002).

G. E. Nilsson, M. Arildsson, M. Linden, “Recent development in laser Doppler perfusion imaging for two-dimensional tissue blood flow mapping,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 109–119.

G. E. Nilsson, A. Jakobsson, K. Wårdell, “Tissue perfusion monitoring and imaging by coherent light scattering,” in Bioptics: Optics in Biomedicine and Environmental Sciences, O. D. D. Soares, A. M. Scheggi, eds., Proc. SPIE1524, 90–109 (1992).

R. F. Bonner, R. Nossal, “Principles of Laser-Doppler Flowmetry,” in Laser-Doppler Blood Flowmetry, A. P. Shepherd, P. Å. Öberg, eds. (Kluwer Academic, Boston, Mass., 1990), pp. 17–45.

W.-F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 275–303.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup and data analysis flow chart illustrating the data-acquisition system (DAQ), measurement-simulation calibration (R i represents reflected intensity), MPR estimation algorithm, and the resulting output (μ̂ a , estimated absorption coefficient; μ̂ s ′, estimated reduced scattering coefficient; plˆ1, estimated photon path length; PerfNL, normalized and linearized LDF perfusion).

Fig. 2
Fig. 2

Relationship among (a) photon path length (pl i ) and perfusion (Perf i ), (b) compensated path length (pl i ′) and linearized perfusion (PerfLi ), (c) compensated path length (pl i ′) and normalized and linearized perfusion (PerfNLi ). All the presented data are based on Monte Carlo simulations with a fixed anisotropy factor (〈cos θ〉 = 0.85) and a range of absorption and reduced scattering coefficients (main reference set). Source-detector separation ρ i = 0.23, 0.46, …, 2.07 mm.

Fig. 3
Fig. 3

Predicted photon path length (mean plus or minus standard deviation) at four different skin locations in one individual for five fiber separations, ρi = 0.23, 0.46, …, 1.15 mm, and λ = 632.8 nm.

Fig. 4
Fig. 4

Absorption coefficients (μ̂ a ) and reduced scattering coefficients (μ̂ s ′) measured at nine different skin locations in one individual at λ = 632.8 nm.

Fig. 5
Fig. 5

Calibrated, normalized, and linearized perfusion (PerfNLi ; mean plus or minus standard deviation) measured in three different individuals on the volar side of the forearm with five different fiber separations.

Tables (6)

Tables Icon

Table 1 Simulated Optical Propertiesa

Tables Icon

Table 2 Variations in Perfusion Estimatesa

Tables Icon

Table 3 Rms of the Relative Estimation Errorsa

Tables Icon

Table 4 In Vivo Intrasite Variabilitya

Tables Icon

Table 5 Mean and Interindividual Variabilitya

Tables Icon

Table 6 In Vivo Intersite Variabilitya

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

pθ=14πβ+1-β1-gHG21+gHG2-2gHG cos θ3/2,
CMBCi=ω PiωRi2,
Hi=CMBCiCMBCi,motility; Hi0, 1,
PerfLi=1-aHi1-bHiPerfi,
pli=pli+plic
PerfNLi=PerfLipli.
ln Ri=m1-m2 ln ρi-m3 ρi,
αˆ=αˆln R3, ln R7 = j,k ajk ln R3j ln R7k, j+k3.
αˆ=a00+a10lnR3+a01lnR7+a11lnR3lnR7+a20lnR32+a02lnR72+a12lnR3lnR72+a21lnR32lnR7+a30lnR33+a03lnR73,

Metrics