Abstract

The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 106 or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
    [CrossRef]
  2. M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
    [CrossRef] [PubMed]
  3. K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
    [CrossRef]
  4. D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
    [CrossRef]
  5. T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot Interferometer,” Appl. Opt. 22, 3503–3513 (1983).
    [CrossRef] [PubMed]
  6. P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
    [CrossRef] [PubMed]
  7. M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
    [CrossRef]
  8. T. L. Killeen, P. B. Hays, “Doppler line profile analysis for a multichannel Fabry-Perot interferometer,” Appl. Opt. 23, 612–620 (1984).
    [CrossRef] [PubMed]
  9. J.-M. Gagné, J.-P. Saint-Dizier, M. Picard, “Méthode d’echantillonage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974).
    [CrossRef]
  10. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
    [CrossRef]
  11. D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).
  12. A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
    [CrossRef]
  13. B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
    [CrossRef] [PubMed]
  14. J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
    [CrossRef]
  15. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
    [CrossRef]
  16. R. Meyer, “Fringe shape with an interferential wedge,” J. Opt. Soc. Am. 71, 1255–1263 (1981). Meyer’s expression for the transmitted amplitude agrees with Born and Wolf if a term unity in his Eq. (11) is replaced with exp(iϕ1), correcting a small error in the evaluation of the phases of the cascade of transmitted waves. Meyer’s Eq. (12) must also be revised, replacing the expression (S1 + S2) with (S12 + S22).
    [CrossRef]
  17. T. T. Kajava, H. M. Lauranto, R. R. E. Salomaa, “Fizeau interferometer in spectral measurements,” J. Opt. Soc. Am. B 10, 1980–1989 (1993).
    [CrossRef]
  18. T. T. Kajava, H. M. Lauranto, A. T. Friberg, “Interference pattern of the Fizeau interferometer,” J. Opt. Soc. Am. A 11, 2045–2054 (1994).
    [CrossRef]
  19. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Sec. 7.6.7.
  20. J. J. Snyder, “Compact static wavemeter for both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959–960 (1978).
    [CrossRef]
  21. J. L. Gardner, “Compact Fizeau wavemeter,” Appl. Opt. 24, 3570–3573 (1985).
    [CrossRef] [PubMed]
  22. G. Koppelmann, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. I,” Optik (Stuttgart) 36, 474–493 (1972).
  23. G. Koppelmann, W. Voßkühler, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. II (Messungen bei senkrechtem Lichteinfall),” Optik (Stuttgart) 36, 164–174 (1973).
  24. Ref. 19, Sect. 7.6.7, Eq. (100).
  25. P. Hariharan, Optical Interferometry (Academic, North Ryde, N.S.W., Australia, 1985), (Eq. 4.25).
  26. P. Langenbeck, “Fizeau interferometer-fringe sharpening,” Appl. Opt. 9, 2053–2058 (1970).
    [CrossRef] [PubMed]
  27. P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalons,” J. Opt. Soc. Am. 44, 761–765 (1954).
    [CrossRef]
  28. D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994). For the solid etalon filters considered by Rust, the permissible solid angle of illumination is increased by the square of the index of refraction of the etalon material.
  29. D. Rees, Hovemere Ltd., Kent, UK (personal communication, 1998).
  30. D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent lidar,” Appl. Opt. 29, 4133–4144 (1990).
    [CrossRef] [PubMed]
  31. D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
    [CrossRef]
  32. Ref. 19, Sect. 7.6.7, text following Eq. (102).
  33. J. A. McKay, P. M. Laufer, L. J. Cotnoir, “A laser spectrometer and wavemeter for pulsed lasers,” NASA-CR-181731 (NASA Langley Research Center, Hampton, Va., 1989); personal communication.

2000 (1)

D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
[CrossRef]

1998 (2)

1997 (2)

M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
[CrossRef] [PubMed]

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

1996 (2)

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

1995 (1)

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

1994 (3)

T. T. Kajava, H. M. Lauranto, A. T. Friberg, “Interference pattern of the Fizeau interferometer,” J. Opt. Soc. Am. A 11, 2045–2054 (1994).
[CrossRef]

D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994). For the solid etalon filters considered by Rust, the permissible solid angle of illumination is increased by the square of the index of refraction of the etalon material.

B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

1993 (2)

T. T. Kajava, H. M. Lauranto, R. R. E. Salomaa, “Fizeau interferometer in spectral measurements,” J. Opt. Soc. Am. B 10, 1980–1989 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

1992 (1)

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

1990 (2)

1985 (1)

1984 (1)

1983 (1)

1982 (1)

D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).

1981 (1)

1978 (1)

J. J. Snyder, “Compact static wavemeter for both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959–960 (1978).
[CrossRef]

1974 (1)

1973 (1)

G. Koppelmann, W. Voßkühler, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. II (Messungen bei senkrechtem Lichteinfall),” Optik (Stuttgart) 36, 164–174 (1973).

1972 (1)

G. Koppelmann, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. I,” Optik (Stuttgart) 36, 474–493 (1972).

1970 (1)

1954 (1)

Abreu, V. J.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Barnes, J. E.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Sec. 7.6.7.

Ceckowski, D. H.

Chanin, M. L.

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

Charleton, P.

D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).

Cotnoir, L. J.

J. A. McKay, P. M. Laufer, L. J. Cotnoir, “A laser spectrometer and wavemeter for pulsed lasers,” NASA-CR-181731 (NASA Langley Research Center, Hampton, Va., 1989); personal communication.

Eriksen, W.

D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
[CrossRef]

Fischer, K. F.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Friberg, A. T.

Fricke, K. H.

D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
[CrossRef]

Fricke, K.-H.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

Fuller-Rowell, T. J.

D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).

Gagné, J.-M.

Gardner, J. L.

Garnier, A.

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

Gentry, B. M.

Hardesty, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

Hays, P. B.

Huffaker, R. M.

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

Irgang, T. D.

M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
[CrossRef] [PubMed]

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Jacquinot, P.

Kajava, T. T.

Kennedy, B. C.

Killeen, T. L.

Koppelmann, G.

G. Koppelmann, W. Voßkühler, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. II (Messungen bei senkrechtem Lichteinfall),” Optik (Stuttgart) 36, 164–174 (1973).

G. Koppelmann, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. I,” Optik (Stuttgart) 36, 474–493 (1972).

Korb, C. L.

Langenbeck, P.

Laufer, P. M.

J. A. McKay, P. M. Laufer, L. J. Cotnoir, “A laser spectrometer and wavemeter for pulsed lasers,” NASA-CR-181731 (NASA Langley Research Center, Hampton, Va., 1989); personal communication.

Lauranto, H. M.

Lloyd, N. D.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

Marzouk, M.

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

McDermid, I. S.

McGill, M. J.

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
[CrossRef] [PubMed]

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

McKay, J. A.

D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
[CrossRef]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
[CrossRef]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
[CrossRef]

J. A. McKay, P. M. Laufer, L. J. Cotnoir, “A laser spectrometer and wavemeter for pulsed lasers,” NASA-CR-181731 (NASA Langley Research Center, Hampton, Va., 1989); personal communication.

McWhirter, I.

D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).

Meyer, R.

Nelke, G.

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

Picard, M.

Rees, D.

D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
[CrossRef]

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent lidar,” Appl. Opt. 29, 4133–4144 (1990).
[CrossRef] [PubMed]

D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).

D. Rees, Hovemere Ltd., Kent, UK (personal communication, 1998).

Rounce, P. A.

D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).

Rust, D. M.

D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994). For the solid etalon filters considered by Rust, the permissible solid angle of illumination is increased by the square of the index of refraction of the etalon material.

Rye, B. J.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

Saint-Dizier, J.-P.

Salomaa, R. R. E.

Scott, V. S.

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

Skinner, W. R.

M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
[CrossRef] [PubMed]

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Smith, K.

D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).

Snyder, J. J.

J. J. Snyder, “Compact static wavemeter for both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959–960 (1978).
[CrossRef]

Spinhirne, J. D.

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

Symanow, D. A.

von Cossart, G.

D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
[CrossRef]

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

von Zahn, U.

D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
[CrossRef]

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

Voßkühler, W.

G. Koppelmann, W. Voßkühler, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. II (Messungen bei senkrechtem Lichteinfall),” Optik (Stuttgart) 36, 164–174 (1973).

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Sec. 7.6.7.

Adv. Space Res. (1)

D. Rees, U. von Zahn, G. von Cossart, K. H. Fricke, W. Eriksen, J. A. McKay, “Daytime lidar measurements of the stratosphere and mesosphere at the Alomar Observatory,” Adv. Space Res. 26, 893–902 (2000).
[CrossRef]

Appl. Opt. (11)

P. Langenbeck, “Fizeau interferometer-fringe sharpening,” Appl. Opt. 9, 2053–2058 (1970).
[CrossRef] [PubMed]

J.-M. Gagné, J.-P. Saint-Dizier, M. Picard, “Méthode d’echantillonage des fonctions déterministes en spectroscopie: application à un spectromètre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974).
[CrossRef]

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot Interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

T. L. Killeen, P. B. Hays, “Doppler line profile analysis for a multichannel Fabry-Perot interferometer,” Appl. Opt. 23, 612–620 (1984).
[CrossRef] [PubMed]

J. L. Gardner, “Compact Fizeau wavemeter,” Appl. Opt. 24, 3570–3573 (1985).
[CrossRef] [PubMed]

P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
[CrossRef] [PubMed]

D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent lidar,” Appl. Opt. 29, 4133–4144 (1990).
[CrossRef] [PubMed]

B. M. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

M. J. McGill, W. R. Skinner, T. D. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1939 (1997).
[CrossRef] [PubMed]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
[CrossRef]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique,” Appl. Opt. 37, 6487–6493 (1998).
[CrossRef]

Appl. Phys. B (1)

A. Garnier, M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

J. Atmos. Terr. Phys. (1)

D. Rees, G. Nelke, K.-H. Fricke, U. von Zahn, G. von Cossart, N. D. Lloyd, “The Doppler wind and temperature system of the Alomar lidar,” J. Atmos. Terr. Phys. 58, 1827–1842 (1996).
[CrossRef]

J. Geophys. (1)

D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric winds during the energy budget campaign: ground-based Fabry-Perot observations supported by dynamical simulations with a three-dimensional, time-dependent thermospheric model,” J. Geophys. 50, 202–211 (1982).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Eng. (3)

D. M. Rust, “Etalon filters,” Opt. Eng. 33, 3342–3348 (1994). For the solid etalon filters considered by Rust, the permissible solid angle of illumination is increased by the square of the index of refraction of the etalon material.

K. F. Fischer, V. J. Abreu, W. R. Skinner, J. E. Barnes, M. J. McGill, T. D. Irgang, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

M. J. McGill, M. Marzouk, V. S. Scott, J. D. Spinhirne, “Holographic circle-to-point converter with particular applications for lidar work,” Opt. Eng. 36, 2171–2175 (1997).
[CrossRef]

Optik (Stuttgart) (2)

G. Koppelmann, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. I,” Optik (Stuttgart) 36, 474–493 (1972).

G. Koppelmann, W. Voßkühler, “Intensitätsverteilungen in Fizeau-Vielstrahlinterferenzen. II (Messungen bei senkrechtem Lichteinfall),” Optik (Stuttgart) 36, 164–174 (1973).

Proc. IEEE (1)

R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[CrossRef]

Sov. J. Quantum Electron. (1)

J. J. Snyder, “Compact static wavemeter for both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959–960 (1978).
[CrossRef]

Other (6)

Ref. 19, Sect. 7.6.7, Eq. (100).

P. Hariharan, Optical Interferometry (Academic, North Ryde, N.S.W., Australia, 1985), (Eq. 4.25).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Sec. 7.6.7.

D. Rees, Hovemere Ltd., Kent, UK (personal communication, 1998).

Ref. 19, Sect. 7.6.7, text following Eq. (102).

J. A. McKay, P. M. Laufer, L. J. Cotnoir, “A laser spectrometer and wavemeter for pulsed lasers,” NASA-CR-181731 (NASA Langley Research Center, Hampton, Va., 1989); personal communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Doppler-shift measurement uncertainty (solid curves) normalized to the value for a perfect photon frequency analyzer, for a MFW in the limit of Airy function fringe shapes. The etalon passband width (FWHM) and free spectral range (Δν FSR) are normalized to the intrinsic spectral width (Δν e ) of the Gaussian source spectrum. The uncertainty increases for decreasing etalon passband width because of etalon reflectance losses. An etalon finesse of 10 or more is needed to prevent fringe overlap. The ideal etalon has a passband width of the order of half Δν e , a result that implies high etalon resolving power.

Fig. 2
Fig. 2

For the Koppelmann shape factor s equal to 0.5, a fringe close to the Airy ideal (dashed curve) is produced. Increasing s to 1.0 by increasing the optical gap or the reflectance finesse to achieve higher resolving power reveals asymmetry and weak Fizeau structure toward the open end of the wedge. A further increase to s = 2.0 reduces the fringe amplitude and increases the asymmetry and the strength of the spurious Fizeau fringes. These curves are for zero wedge tilt relative to the incident illumination.

Fig. 3
Fig. 3

Tilting of the wedge so that the incident illumination is directed by a small angle toward the wedge vertex reduces the asymmetry and fringe broadening of a Fizeau fringe with a relatively large shape factor. This fringe, with shape factor s = 1.0, is brought close to the Airy ideal (broken line) when the wedge is tilted at the Langenbeck angle. This result permits an increase of the Koppelmann criterion for Airy-like fringes to s ≲ 1.0.

Fig. 4
Fig. 4

Ratio of the FWHM of a Fizeau fringe with shape parameter s = 1 to that of the Fabry-Perot with the same dimensions (50-mm gap) and finesse (20), versus the tilt of the wedge from the incident plane wave. Tilting by 400–600 µrad yields a substantial enhancement of the fringe, increasing the peak amplitude and decreasing the width. With tilting, the FWHM of the fringe is not much larger than that of the equivalent Fabry-Perot. The Langenbeck estimate of the optimal tilt angle is somewhat lower than the true optimum.

Fig. 5
Fig. 5

Ideal maximum resolving power (product of order number and finesse) versus the etalon optical gap for a wavelength of 500 nm and a fringe density ρ of four fringes over 25 mm (α = 40 µrad). Upper limits to the optical gap and the resolving power are set by the Koppelmann shape factor s that defines the onset of degraded interference fringes. For normal incidence, the limiting value of s is approximately 0.6; for a wedge tilted at the Langenbeck angle, the limit is increased to approximately 1.0. Actual Fizeau wedge resolving powers will be modestly (10–20%) smaller. With the larger value for the s parameter, permitted by wedge tilting, the MFW can achieve resolving powers well above 106.

Fig. 6
Fig. 6

Maximum angle of illumination of interferometers for Doppler-shift measurement for a wavelength of 355 nm, a finesse of 20, and (source spectral width)/(FSR) = 0.20. A Rayleigh backscatter instrument will have an acceptance angle of some milliradians and will not present field-of-view problems, even after coupling to a telescope with a 20× larger aperture than the interferometer. A Mie backscatter instrument will imply much smaller receiver fields of view, of the order of 25 µrad for the Fizeau and 100 µrad for the Fabry-Perot. The smaller fields of view may present significant laser-receiver coalignment problems.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s=m0α21/3FR,
m0FR2λρFR2smax3,

Metrics