Abstract

We demonstrate wavelength control of a single-frequency diode-pumped Ho:Tm:YLF laser by referencing its wavelength to an absorption line of carbon dioxide. We accomplish this wavelength control by injection seeding with a cw Ho:Tm:YLF laser that can be tuned over or stabilized to carbon dioxide or water vapor lines. We show that the pulsed laser can be scanned precisely over an absorption line of carbon dioxide by scanning the injection seed laser wavelength. We locked the pulsed laser to within 18.5 MHz of the absorption line center by stabilizing the injection seed on the line center. The single-frequency pulsed output, intended for use as a transmitter for differential absorption lidar detection of atmospheric carbon dioxide and water vapor and for coherent detection of wind, is 100 mJ per pulse at a 5-Hz repetition rate.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output en-ergy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W.R. Bosenberg, M. M. Fejes, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (1998), pp. 194–196.
  2. G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Proceedings of Tenth Biennial Coherent Laser Radar Technology and Applications Conference, Mt. Hood, Oregon, 28 June 1999 (Universities Space Research Association, Huntsville, Ala., 1999), pp. 69–71.
  3. R. F. Teehan, J. C. Bienfang, C. A. Denman, “Power scalling and frequency stabilization of an injection-locked Nd:YAG rod laser,” Appl. Opt. 39, 3076–3084 (2000).
    [CrossRef]
  4. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
    [CrossRef]
  5. J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
    [CrossRef]
  6. S. W. Henderson, E. Y. Yuen, E. S. Fry, “Fast resonance detection technique for single-frequency operation of injection seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
    [CrossRef] [PubMed]
  7. G. J. Koch, M. Petros, J. Yu, “Coherent DIAL with a Ho:Tm:YLF laser for measurement of wind, water vapor, and carbon dioxide,” in Eleventh Coherent Laser Radar Conference, Malven, Worcestershire, U.K., 1 July 2001, D. V. Willets, ed. (Defence Evaluation and Research Agency, Malvern, Worcestershire, U.K., 2001), pp. 130–133.

2000 (2)

1998 (1)

1986 (1)

Barnes, N. P.

J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output en-ergy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W.R. Bosenberg, M. M. Fejes, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (1998), pp. 194–196.

Bienfang, J. C.

Davis, R. E.

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Proceedings of Tenth Biennial Coherent Laser Radar Technology and Applications Conference, Mt. Hood, Oregon, 28 June 1999 (Universities Space Research Association, Huntsville, Ala., 1999), pp. 69–71.

Denman, C. A.

Dharamsi, A. N.

G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
[CrossRef]

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Proceedings of Tenth Biennial Coherent Laser Radar Technology and Applications Conference, Mt. Hood, Oregon, 28 June 1999 (Universities Space Research Association, Huntsville, Ala., 1999), pp. 69–71.

Fitzgerald, C. M.

Fry, E. S.

Henderson, S. W.

Koch, G. J.

G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
[CrossRef]

G. J. Koch, M. Petros, J. Yu, “Coherent DIAL with a Ho:Tm:YLF laser for measurement of wind, water vapor, and carbon dioxide,” in Eleventh Coherent Laser Radar Conference, Malven, Worcestershire, U.K., 1 July 2001, D. V. Willets, ed. (Defence Evaluation and Research Agency, Malvern, Worcestershire, U.K., 2001), pp. 130–133.

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Proceedings of Tenth Biennial Coherent Laser Radar Technology and Applications Conference, Mt. Hood, Oregon, 28 June 1999 (Universities Space Research Association, Huntsville, Ala., 1999), pp. 69–71.

Lockard, G. E.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output en-ergy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W.R. Bosenberg, M. M. Fejes, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (1998), pp. 194–196.

McCarthy, J. C.

G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
[CrossRef]

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Proceedings of Tenth Biennial Coherent Laser Radar Technology and Applications Conference, Mt. Hood, Oregon, 28 June 1999 (Universities Space Research Association, Huntsville, Ala., 1999), pp. 69–71.

Modlin, E. A.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output en-ergy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W.R. Bosenberg, M. M. Fejes, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (1998), pp. 194–196.

Petros, M.

J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

G. J. Koch, M. Petros, J. Yu, “Coherent DIAL with a Ho:Tm:YLF laser for measurement of wind, water vapor, and carbon dioxide,” in Eleventh Coherent Laser Radar Conference, Malven, Worcestershire, U.K., 1 July 2001, D. V. Willets, ed. (Defence Evaluation and Research Agency, Malvern, Worcestershire, U.K., 2001), pp. 130–133.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output en-ergy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W.R. Bosenberg, M. M. Fejes, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (1998), pp. 194–196.

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Proceedings of Tenth Biennial Coherent Laser Radar Technology and Applications Conference, Mt. Hood, Oregon, 28 June 1999 (Universities Space Research Association, Huntsville, Ala., 1999), pp. 69–71.

Singh, U. N.

J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output en-ergy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W.R. Bosenberg, M. M. Fejes, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (1998), pp. 194–196.

Teehan, R. F.

Williams-Byrd, J. A.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output en-ergy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W.R. Bosenberg, M. M. Fejes, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (1998), pp. 194–196.

Yu, J.

J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

G. J. Koch, M. Petros, J. Yu, “Coherent DIAL with a Ho:Tm:YLF laser for measurement of wind, water vapor, and carbon dioxide,” in Eleventh Coherent Laser Radar Conference, Malven, Worcestershire, U.K., 1 July 2001, D. V. Willets, ed. (Defence Evaluation and Research Agency, Malvern, Worcestershire, U.K., 2001), pp. 130–133.

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output en-ergy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W.R. Bosenberg, M. M. Fejes, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (1998), pp. 194–196.

Yuen, E. Y.

Appl. Opt. (2)

Opt. Lett. (2)

Other (3)

U. N. Singh, J. Yu, M. Petros, N. P. Barnes, J. A. Williams-Byrd, G. E. Lockard, E. A. Modlin, “Injection-seeded, room-temperature, diode-pumped Ho:Tm:YLF laser with output en-ergy of 600 mJ at 10 Hz,” in Advanced Solid State Lasers, W.R. Bosenberg, M. M. Fejes, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (1998), pp. 194–196.

G. J. Koch, R. E. Davis, A. N. Dharamsi, M. Petros, J. C. McCarthy, “Differential absorption measurements of atmospheric water vapor with a coherent lidar at 2050.532 nm,” in Proceedings of Tenth Biennial Coherent Laser Radar Technology and Applications Conference, Mt. Hood, Oregon, 28 June 1999 (Universities Space Research Association, Huntsville, Ala., 1999), pp. 69–71.

G. J. Koch, M. Petros, J. Yu, “Coherent DIAL with a Ho:Tm:YLF laser for measurement of wind, water vapor, and carbon dioxide,” in Eleventh Coherent Laser Radar Conference, Malven, Worcestershire, U.K., 1 July 2001, D. V. Willets, ed. (Defence Evaluation and Research Agency, Malvern, Worcestershire, U.K., 2001), pp. 130–133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Design of the wavelength control system. Two lasers are involved, shown within dotted lines: a cw injection seed and a pulsed oscillator.

Fig. 2
Fig. 2

Oscilloscope trace of laser pulses before (upper trace) and after (middle trace) absorption cell. One pulse is positive going and the other negative going owing to the opposite biases of the detectors. A fast Fourier transform is shown (lower trace) of the pulse before the cell that shows no mode beating, verifying that the laser is operating at a single frequency.

Fig. 3
Fig. 3

(a) Transmission of seed laser through carbon dioxide as output coupler PZT voltage is ramped. (b) Corresponding pulsed laser output and (c) transmission of pulsed laser through carbon dioxide line. The line scanned is centered at 2050.428 nm.

Fig. 4
Fig. 4

Layout of heterodyne experiment to assess the stability of the pulsed laser.

Fig. 5
Fig. 5

(a) Stabilization of cw laser to absorption line of carbon dioxide at 2050.428 nm and (b) intermediate frequency of heterodyne signal showing frequency offset between pulsed laser and cw laser over a time span of 20 s.

Metrics