Abstract

We demonstrate wavelength control of a single-frequency diode-pumped Ho:Tm:YLF laser by referencing its wavelength to an absorption line of carbon dioxide. We accomplish this wavelength control by injection seeding with a cw Ho:Tm:YLF laser that can be tuned over or stabilized to carbon dioxide or water vapor lines. We show that the pulsed laser can be scanned precisely over an absorption line of carbon dioxide by scanning the injection seed laser wavelength. We locked the pulsed laser to within 18.5 MHz of the absorption line center by stabilizing the injection seed on the line center. The single-frequency pulsed output, intended for use as a transmitter for differential absorption lidar detection of atmospheric carbon dioxide and water vapor and for coherent detection of wind, is 100 mJ per pulse at a 5-Hz repetition rate.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription