Abstract

A 10-kHz pulse repetition frequency dye laser, end pumped by a Nd:YLF laser, is reported. This laser was tunable from 590 to 655 nm, and up to 2.55 W of output power was obtained at the 609-nm peak tuning wavelength. By inserting an etalon into the dye laser cavity and frequency doubling using a β-barium borate crystal, we obtained up to 125 mW of 308-nm single-etalon-mode output, which shows potential for the performance of airborne measurements of tropospheric hydroxyl radical concentrations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Holland, M. Hessling, A. Hofzumahaus, “In situ measurement of tropospheric OH radicals by laser-induced-fluorescence—a description of the KFA instrument,” J. Atmos. Sci. 52, 3393–3401 (1995).
    [CrossRef]
  2. D. J. Creasey, D. E. Heard, P. A. Halford-Maw, M. J. Pilling, B. J. Whitaker, “Implementation and initial deployment of a field instrument for measurement of OH and HO2 in the troposphere by laser-induced fluorescence,” J. Chem. Soc. Faraday Trans. 93, 2907–2913 (1997).
    [CrossRef]
  3. P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
    [CrossRef]
  4. W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
    [CrossRef]
  5. E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
    [CrossRef]
  6. M. Broyer, J. Chevaleyre, G. Delecrétaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B. 35, 31–36 (1984).
    [CrossRef]
  7. I. J. Evans, C. E. Webb, “Efficient high repetition rate tunable sources for the ultra-violet,” Opt. Commun. 113, 72–78 (1994).
    [CrossRef]
  8. I. J. Evans, C. E. Webb, “A 10 kHz pulsed tunable laser source at 308 nm for tropospheric OH monitoring,” Chem. Phys. Lett. 230, 127–130 (1994).
    [CrossRef]
  9. A. J. S. McGonigle, “Tunable UV lasers,” D. Phil. dissertation (University of Oxford, Oxford, UK, 2000).
  10. K. F. Wall, M. Jaspan, A. Dergachev, A. Szpak, J. H. Flint, P. F. Moulton, “A 40 W, single frequency, Nd:YLF master oscillator/power amplifier system,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 216–221.
  11. A. J. S. McGonigle, D. W. Coutts, C. E. Webb, “530-mW 7-kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999).
    [CrossRef]
  12. D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).
  13. D. Heard, School of Chemistry University of Leeds Leeds, LS2 9JT UK (personal communication, 2001).
  14. D. W. Coutts, “Time resolved beam divergence from a copper vapour laser with unstable resonator,” IEEE J. Quantum Electron. 31, 330–342 (1995).
    [CrossRef]

2001 (1)

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

2000 (1)

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

1999 (1)

1998 (1)

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

1997 (1)

D. J. Creasey, D. E. Heard, P. A. Halford-Maw, M. J. Pilling, B. J. Whitaker, “Implementation and initial deployment of a field instrument for measurement of OH and HO2 in the troposphere by laser-induced fluorescence,” J. Chem. Soc. Faraday Trans. 93, 2907–2913 (1997).
[CrossRef]

1995 (2)

F. Holland, M. Hessling, A. Hofzumahaus, “In situ measurement of tropospheric OH radicals by laser-induced-fluorescence—a description of the KFA instrument,” J. Atmos. Sci. 52, 3393–3401 (1995).
[CrossRef]

D. W. Coutts, “Time resolved beam divergence from a copper vapour laser with unstable resonator,” IEEE J. Quantum Electron. 31, 330–342 (1995).
[CrossRef]

1994 (3)

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

I. J. Evans, C. E. Webb, “Efficient high repetition rate tunable sources for the ultra-violet,” Opt. Commun. 113, 72–78 (1994).
[CrossRef]

I. J. Evans, C. E. Webb, “A 10 kHz pulsed tunable laser source at 308 nm for tropospheric OH monitoring,” Chem. Phys. Lett. 230, 127–130 (1994).
[CrossRef]

1984 (1)

M. Broyer, J. Chevaleyre, G. Delecrétaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B. 35, 31–36 (1984).
[CrossRef]

Allen, N. T.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Anderson, J. G.

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Binks, D. J.

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Broyer, M.

M. Broyer, J. Chevaleyre, G. Delecrétaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B. 35, 31–36 (1984).
[CrossRef]

Brune, W. H.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Bui, T. P.

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

Campos, T.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Chevaleyre, J.

M. Broyer, J. Chevaleyre, G. Delecrétaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B. 35, 31–36 (1984).
[CrossRef]

Cohen, R. C.

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Collins, J. E.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Coutts, D. W.

A. J. S. McGonigle, D. W. Coutts, C. E. Webb, “530-mW 7-kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999).
[CrossRef]

D. W. Coutts, “Time resolved beam divergence from a copper vapour laser with unstable resonator,” IEEE J. Quantum Electron. 31, 330–342 (1995).
[CrossRef]

Creasey, D. J.

D. J. Creasey, D. E. Heard, P. A. Halford-Maw, M. J. Pilling, B. J. Whitaker, “Implementation and initial deployment of a field instrument for measurement of OH and HO2 in the troposphere by laser-induced fluorescence,” J. Chem. Soc. Faraday Trans. 93, 2907–2913 (1997).
[CrossRef]

Delecrétaz, G.

M. Broyer, J. Chevaleyre, G. Delecrétaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B. 35, 31–36 (1984).
[CrossRef]

Demusz, J. N.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Dergachev, A.

K. F. Wall, M. Jaspan, A. Dergachev, A. Szpak, J. H. Flint, P. F. Moulton, “A 40 W, single frequency, Nd:YLF master oscillator/power amplifier system,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 216–221.

Evans, I. J.

I. J. Evans, C. E. Webb, “Efficient high repetition rate tunable sources for the ultra-violet,” Opt. Commun. 113, 72–78 (1994).
[CrossRef]

I. J. Evans, C. E. Webb, “A 10 kHz pulsed tunable laser source at 308 nm for tropospheric OH monitoring,” Chem. Phys. Lett. 230, 127–130 (1994).
[CrossRef]

Faloona, I. C.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Flint, J. H.

K. F. Wall, M. Jaspan, A. Dergachev, A. Szpak, J. H. Flint, P. F. Moulton, “A 40 W, single frequency, Nd:YLF master oscillator/power amplifier system,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 216–221.

Gao, R. S.

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

Golding, P. S.

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Halford-Maw, P. A.

D. J. Creasey, D. E. Heard, P. A. Halford-Maw, M. J. Pilling, B. J. Whitaker, “Implementation and initial deployment of a field instrument for measurement of OH and HO2 in the troposphere by laser-induced fluorescence,” J. Chem. Soc. Faraday Trans. 93, 2907–2913 (1997).
[CrossRef]

Hanisco, T. F.

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Hazen, N. L.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Heard, D.

D. Heard, School of Chemistry University of Leeds Leeds, LS2 9JT UK (personal communication, 2001).

Heard, D. E.

D. J. Creasey, D. E. Heard, P. A. Halford-Maw, M. J. Pilling, B. J. Whitaker, “Implementation and initial deployment of a field instrument for measurement of OH and HO2 in the troposphere by laser-induced fluorescence,” J. Chem. Soc. Faraday Trans. 93, 2907–2913 (1997).
[CrossRef]

Hessling, M.

F. Holland, M. Hessling, A. Hofzumahaus, “In situ measurement of tropospheric OH radicals by laser-induced-fluorescence—a description of the KFA instrument,” J. Atmos. Sci. 52, 3393–3401 (1995).
[CrossRef]

Hofzumahaus, A.

F. Holland, M. Hessling, A. Hofzumahaus, “In situ measurement of tropospheric OH radicals by laser-induced-fluorescence—a description of the KFA instrument,” J. Atmos. Sci. 52, 3393–3401 (1995).
[CrossRef]

Holland, F.

F. Holland, M. Hessling, A. Hofzumahaus, “In situ measurement of tropospheric OH radicals by laser-induced-fluorescence—a description of the KFA instrument,” J. Atmos. Sci. 52, 3393–3401 (1995).
[CrossRef]

Jacob, D. J.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Jaegle, L.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Jaspan, M.

K. F. Wall, M. Jaspan, A. Dergachev, A. Szpak, J. H. Flint, P. F. Moulton, “A 40 W, single frequency, Nd:YLF master oscillator/power amplifier system,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 216–221.

King, T. A.

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Lanham, N. W.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Lanzendorf, E. J.

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

Lapson, L. B.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Margitan, J. J.

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

McGonigle, A. J. S.

Moulton, P. F.

K. F. Wall, M. Jaspan, A. Dergachev, A. Szpak, J. H. Flint, P. F. Moulton, “A 40 W, single frequency, Nd:YLF master oscillator/power amplifier system,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 216–221.

Oliver, J. F.

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Pilling, M. J.

D. J. Creasey, D. E. Heard, P. A. Halford-Maw, M. J. Pilling, B. J. Whitaker, “Implementation and initial deployment of a field instrument for measurement of OH and HO2 in the troposphere by laser-induced fluorescence,” J. Chem. Soc. Faraday Trans. 93, 2907–2913 (1997).
[CrossRef]

Ridley, B. A.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Sachse, G. W.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Stimpfle, R. M.

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

Szpak, A.

K. F. Wall, M. Jaspan, A. Dergachev, A. Szpak, J. H. Flint, P. F. Moulton, “A 40 W, single frequency, Nd:YLF master oscillator/power amplifier system,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 216–221.

Tan, D.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Vay, S. A.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Wall, K. F.

K. F. Wall, M. Jaspan, A. Dergachev, A. Szpak, J. H. Flint, P. F. Moulton, “A 40 W, single frequency, Nd:YLF master oscillator/power amplifier system,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 216–221.

Webb, C. E.

A. J. S. McGonigle, D. W. Coutts, C. E. Webb, “530-mW 7-kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser,” Opt. Lett. 24, 232–234 (1999).
[CrossRef]

I. J. Evans, C. E. Webb, “A 10 kHz pulsed tunable laser source at 308 nm for tropospheric OH monitoring,” Chem. Phys. Lett. 230, 127–130 (1994).
[CrossRef]

I. J. Evans, C. E. Webb, “Efficient high repetition rate tunable sources for the ultra-violet,” Opt. Commun. 113, 72–78 (1994).
[CrossRef]

Weinheimer, A. J.

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

Wennberg, P. O.

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Whitaker, B. J.

D. J. Creasey, D. E. Heard, P. A. Halford-Maw, M. J. Pilling, B. J. Whitaker, “Implementation and initial deployment of a field instrument for measurement of OH and HO2 in the troposphere by laser-induced fluorescence,” J. Chem. Soc. Faraday Trans. 93, 2907–2913 (1997).
[CrossRef]

Wöste, L.

M. Broyer, J. Chevaleyre, G. Delecrétaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B. 35, 31–36 (1984).
[CrossRef]

Appl. Phys. B. (1)

M. Broyer, J. Chevaleyre, G. Delecrétaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B. 35, 31–36 (1984).
[CrossRef]

Chem. Phys. Lett. (1)

I. J. Evans, C. E. Webb, “A 10 kHz pulsed tunable laser source at 308 nm for tropospheric OH monitoring,” Chem. Phys. Lett. 230, 127–130 (1994).
[CrossRef]

Geophys. Res. Lett. (1)

W. H. Brune, I. C. Faloona, D. Tan, A. J. Weinheimer, T. Campos, B. A. Ridley, S. A. Vay, J. E. Collins, G. W. Sachse, L. Jaegle, D. J. Jacob, “Airborne in-situ OH and HO2 observations in the cloud-free troposphere and lower stratosphere during SUCCESS,” Geophys. Res. Lett. 25, 1701–1704 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. W. Coutts, “Time resolved beam divergence from a copper vapour laser with unstable resonator,” IEEE J. Quantum Electron. 31, 330–342 (1995).
[CrossRef]

J. Atmos. Sci. (1)

F. Holland, M. Hessling, A. Hofzumahaus, “In situ measurement of tropospheric OH radicals by laser-induced-fluorescence—a description of the KFA instrument,” J. Atmos. Sci. 52, 3393–3401 (1995).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

D. J. Creasey, D. E. Heard, P. A. Halford-Maw, M. J. Pilling, B. J. Whitaker, “Implementation and initial deployment of a field instrument for measurement of OH and HO2 in the troposphere by laser-induced fluorescence,” J. Chem. Soc. Faraday Trans. 93, 2907–2913 (1997).
[CrossRef]

J. Mod. Opt. (1)

D. J. Binks, P. S. Golding, T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

J. Phys. Chem. A (1)

E. J. Lanzendorf, T. F. Hanisco, P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. G. Anderson, R. S. Gao, J. J. Margitan, T. P. Bui, “Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O-3 and NOx based on in situ measurements from the NASA ER-2,” J. Phys. Chem. A 105, 1535–1542 (2001).
[CrossRef]

Opt. Commun. (1)

I. J. Evans, C. E. Webb, “Efficient high repetition rate tunable sources for the ultra-violet,” Opt. Commun. 113, 72–78 (1994).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

P. O. Wennberg, R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, J. G. Anderson, “Aircraft-borne laser induced fluorescence instrument for the in-site detection of hydroxyl and hydroperoxyl radicals,” Rev. Sci. Instrum. 65, 1858–1876 (1994).
[CrossRef]

Other (3)

A. J. S. McGonigle, “Tunable UV lasers,” D. Phil. dissertation (University of Oxford, Oxford, UK, 2000).

K. F. Wall, M. Jaspan, A. Dergachev, A. Szpak, J. H. Flint, P. F. Moulton, “A 40 W, single frequency, Nd:YLF master oscillator/power amplifier system,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 216–221.

D. Heard, School of Chemistry University of Leeds Leeds, LS2 9JT UK (personal communication, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration of the LAS Intradye II dye laser.

Fig. 2
Fig. 2

Dye laser output power versus incident Nd:YLF pump power for operation at 616 nm with no intracavity etalon.

Fig. 3
Fig. 3

Tunability of the dye laser, operated both with and without the intracavity etalon, when pumped with 9.8 W from the Nd:YLF laser.

Fig. 4
Fig. 4

Temporal pulse shapes from the 616-nm dye laser, operated with the intracavity etalon and pumped with 9.8 W, both with and without phase matching in the β-barium borate crystal (depleted and undepleted pulses, respectively). The 308-nm harmonic pulse shape is also shown.

Metrics