Abstract

The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ulrich Brackmann, Lambdachrome Laser-grade Dyes Data Sheets (Lambda Physik GmbH, Germany, 1986).
  2. D. Klick, “Industrial application of dye lasers,” in Dye Laser Principles with Applications, (Academic, New York, 1990), pp. 345–398.
    [CrossRef]
  3. C. E. Webb, “High power dye lasers pumped by copper vapor lasers,” in High-Power Dye Lasers, F. J. Duarte, ed., Vol. 65 of Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 1991), pp. 177–179.
  4. O. G. Peterson, “Dye lasers,” in Methods of Experimental Physics: Quantum Electronics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15, part A, pp. 266–267,
  5. E. Rabinowitch, L. F. Epstein, “Polymerization of dyestuffs in solution: thionine and methylene blue,” J. Am. Chem. Soc. 63, 69–78 (1941).
    [CrossRef]
  6. O. G. Peterson, S. A. Tuccio, B. B. Snavely, “cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
    [CrossRef]
  7. F. P. Schafer, “Principles of dye laser operation,” in Dye Lasers, F. P. Schafer, ed. (Springer-Verlag, Berlin, 1977), pp. 21–24, 158–159.
  8. R. H. Baker, M. Gratzel, R. Steiger, “Drastic fluorescence enhancement and photochemical stabilization of cyanine dyes through micellar systems,” J. Am. Chem. Soc. 102, 847–848 (1980).
    [CrossRef]
  9. Z. Konefal, E. Lisicki, T. Marszalek, “The influence of energy migration in micellar dye solutions on the performance of dye lasers,” Acta Phys. Pol. A 52, 149–155 (1977).
  10. A. A. Shahinian, “Correlation between the micelle structure and the lasing efficiency of micelle incorporated dye,” Laser Phys. 5, 711–718 (1995).
  11. K. Igarshi, M. Maeda, T. Takao, M. Uchiumi, I. Oki, K. Shimamoto, “Operation of Rhodamine 6G dye laser in water solution,” Jpn. J. Appl. Phys. 34, 3093–3096 (1995).
    [CrossRef]
  12. M. E. Diaz Garcia, A. Sanz-Medel, “Dye-surfactant interactions: a review,” Talanta 33, 255–264 (1986).
    [CrossRef]
  13. D. Magde, G. E. Rojas, P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of Xanthene dyes,” Photochem. Photobiol. 70, 737–744 (1999).
    [CrossRef]
  14. J. E. Selwyn, J. I. Steinfeld, “Aggregation equilibria of Xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
    [CrossRef]
  15. Kh. L. Arvan, N. E. Zaitseva, “Spectral investigation of the influence of the solvent on the aggregation of organic dyes,” Opt. Spectrosc. 10, 272–276 (1961).
  16. G. A. K. Wallece, J. H. Flint, S. C. Wallace, “Resonance energy transfer between lasing dyes in micellar media,” Chem. Phys. Lett. 32, 71–75 (1975).
    [CrossRef]
  17. S. Sinha, A. K. Ray, S. Kundu, S. Kumar, S. K. S. Nair, K. Dasgupta, “Photostability of laser dye solutions under copper vapour laser excitation,” Appl. Phys. B 72, 617–621 (2001).
    [CrossRef]
  18. V. K. Kelkar, B. S. Valaulikar, J. T. Kunjappu, C. Manohar, “Aggregation characteristics of laser dye Rhodamine 6G in aqueous surfactant solutions, “ Photochem. Photobiol. 52, 717–721 (1990).
    [CrossRef]
  19. J. H. Fendler, E. J. Fendler, Micellar and Macromolecular Systems, (Academic, New York, 1975) p. 20.
  20. F. J. Duarte, J. A. Piper, “Narrow linewidth high prf copper laser-pumped dye laser oscillators,” Appl. Opt. 23, 1391–1394 (1984).
    [CrossRef]
  21. K. Dasgupta, “Development of high repetition rate pulse dye lasers and their application in multistep excitation spectroscopy of atoms,” Ph.D. dissertation (University of Bombay, India, 1989).
  22. I. L. Bass, R. E. Bonanno, R. P. Hackel, P. R. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992).
    [CrossRef] [PubMed]
  23. C. H. Chen, J. L. Fox, F. J. Duarte, J. J. Ehrlich, “Lasing characteristic of new coumarin-analog dyes: broadband and narrow-linewidth performances,” Appl. Opt. 27, 443–445 (1988).
    [CrossRef] [PubMed]
  24. C.-M. Hu, R. Zwanzig, “Rotational friction coefficients for spheriods with the slipping boundary condition,” J. Chem. Phys. 60, 4354–4357 (1974).
    [CrossRef]

2001 (1)

S. Sinha, A. K. Ray, S. Kundu, S. Kumar, S. K. S. Nair, K. Dasgupta, “Photostability of laser dye solutions under copper vapour laser excitation,” Appl. Phys. B 72, 617–621 (2001).
[CrossRef]

1999 (1)

D. Magde, G. E. Rojas, P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of Xanthene dyes,” Photochem. Photobiol. 70, 737–744 (1999).
[CrossRef]

1995 (2)

A. A. Shahinian, “Correlation between the micelle structure and the lasing efficiency of micelle incorporated dye,” Laser Phys. 5, 711–718 (1995).

K. Igarshi, M. Maeda, T. Takao, M. Uchiumi, I. Oki, K. Shimamoto, “Operation of Rhodamine 6G dye laser in water solution,” Jpn. J. Appl. Phys. 34, 3093–3096 (1995).
[CrossRef]

1992 (1)

1990 (1)

V. K. Kelkar, B. S. Valaulikar, J. T. Kunjappu, C. Manohar, “Aggregation characteristics of laser dye Rhodamine 6G in aqueous surfactant solutions, “ Photochem. Photobiol. 52, 717–721 (1990).
[CrossRef]

1988 (1)

1986 (1)

M. E. Diaz Garcia, A. Sanz-Medel, “Dye-surfactant interactions: a review,” Talanta 33, 255–264 (1986).
[CrossRef]

1984 (1)

1980 (1)

R. H. Baker, M. Gratzel, R. Steiger, “Drastic fluorescence enhancement and photochemical stabilization of cyanine dyes through micellar systems,” J. Am. Chem. Soc. 102, 847–848 (1980).
[CrossRef]

1977 (1)

Z. Konefal, E. Lisicki, T. Marszalek, “The influence of energy migration in micellar dye solutions on the performance of dye lasers,” Acta Phys. Pol. A 52, 149–155 (1977).

1975 (1)

G. A. K. Wallece, J. H. Flint, S. C. Wallace, “Resonance energy transfer between lasing dyes in micellar media,” Chem. Phys. Lett. 32, 71–75 (1975).
[CrossRef]

1974 (1)

C.-M. Hu, R. Zwanzig, “Rotational friction coefficients for spheriods with the slipping boundary condition,” J. Chem. Phys. 60, 4354–4357 (1974).
[CrossRef]

1972 (1)

J. E. Selwyn, J. I. Steinfeld, “Aggregation equilibria of Xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
[CrossRef]

1970 (1)

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

1961 (1)

Kh. L. Arvan, N. E. Zaitseva, “Spectral investigation of the influence of the solvent on the aggregation of organic dyes,” Opt. Spectrosc. 10, 272–276 (1961).

1941 (1)

E. Rabinowitch, L. F. Epstein, “Polymerization of dyestuffs in solution: thionine and methylene blue,” J. Am. Chem. Soc. 63, 69–78 (1941).
[CrossRef]

Arvan, Kh. L.

Kh. L. Arvan, N. E. Zaitseva, “Spectral investigation of the influence of the solvent on the aggregation of organic dyes,” Opt. Spectrosc. 10, 272–276 (1961).

Baker, R. H.

R. H. Baker, M. Gratzel, R. Steiger, “Drastic fluorescence enhancement and photochemical stabilization of cyanine dyes through micellar systems,” J. Am. Chem. Soc. 102, 847–848 (1980).
[CrossRef]

Bass, I. L.

Bonanno, R. E.

Brackmann, Ulrich

Ulrich Brackmann, Lambdachrome Laser-grade Dyes Data Sheets (Lambda Physik GmbH, Germany, 1986).

Chen, C. H.

Dasgupta, K.

S. Sinha, A. K. Ray, S. Kundu, S. Kumar, S. K. S. Nair, K. Dasgupta, “Photostability of laser dye solutions under copper vapour laser excitation,” Appl. Phys. B 72, 617–621 (2001).
[CrossRef]

K. Dasgupta, “Development of high repetition rate pulse dye lasers and their application in multistep excitation spectroscopy of atoms,” Ph.D. dissertation (University of Bombay, India, 1989).

Diaz Garcia, M. E.

M. E. Diaz Garcia, A. Sanz-Medel, “Dye-surfactant interactions: a review,” Talanta 33, 255–264 (1986).
[CrossRef]

Duarte, F. J.

Ehrlich, J. J.

Epstein, L. F.

E. Rabinowitch, L. F. Epstein, “Polymerization of dyestuffs in solution: thionine and methylene blue,” J. Am. Chem. Soc. 63, 69–78 (1941).
[CrossRef]

Fendler, E. J.

J. H. Fendler, E. J. Fendler, Micellar and Macromolecular Systems, (Academic, New York, 1975) p. 20.

Fendler, J. H.

J. H. Fendler, E. J. Fendler, Micellar and Macromolecular Systems, (Academic, New York, 1975) p. 20.

Flint, J. H.

G. A. K. Wallece, J. H. Flint, S. C. Wallace, “Resonance energy transfer between lasing dyes in micellar media,” Chem. Phys. Lett. 32, 71–75 (1975).
[CrossRef]

Fox, J. L.

Gratzel, M.

R. H. Baker, M. Gratzel, R. Steiger, “Drastic fluorescence enhancement and photochemical stabilization of cyanine dyes through micellar systems,” J. Am. Chem. Soc. 102, 847–848 (1980).
[CrossRef]

Hackel, R. P.

Hammond, P. R.

Hu, C.-M.

C.-M. Hu, R. Zwanzig, “Rotational friction coefficients for spheriods with the slipping boundary condition,” J. Chem. Phys. 60, 4354–4357 (1974).
[CrossRef]

Igarshi, K.

K. Igarshi, M. Maeda, T. Takao, M. Uchiumi, I. Oki, K. Shimamoto, “Operation of Rhodamine 6G dye laser in water solution,” Jpn. J. Appl. Phys. 34, 3093–3096 (1995).
[CrossRef]

Kelkar, V. K.

V. K. Kelkar, B. S. Valaulikar, J. T. Kunjappu, C. Manohar, “Aggregation characteristics of laser dye Rhodamine 6G in aqueous surfactant solutions, “ Photochem. Photobiol. 52, 717–721 (1990).
[CrossRef]

Klick, D.

D. Klick, “Industrial application of dye lasers,” in Dye Laser Principles with Applications, (Academic, New York, 1990), pp. 345–398.
[CrossRef]

Konefal, Z.

Z. Konefal, E. Lisicki, T. Marszalek, “The influence of energy migration in micellar dye solutions on the performance of dye lasers,” Acta Phys. Pol. A 52, 149–155 (1977).

Kumar, S.

S. Sinha, A. K. Ray, S. Kundu, S. Kumar, S. K. S. Nair, K. Dasgupta, “Photostability of laser dye solutions under copper vapour laser excitation,” Appl. Phys. B 72, 617–621 (2001).
[CrossRef]

Kundu, S.

S. Sinha, A. K. Ray, S. Kundu, S. Kumar, S. K. S. Nair, K. Dasgupta, “Photostability of laser dye solutions under copper vapour laser excitation,” Appl. Phys. B 72, 617–621 (2001).
[CrossRef]

Kunjappu, J. T.

V. K. Kelkar, B. S. Valaulikar, J. T. Kunjappu, C. Manohar, “Aggregation characteristics of laser dye Rhodamine 6G in aqueous surfactant solutions, “ Photochem. Photobiol. 52, 717–721 (1990).
[CrossRef]

Lisicki, E.

Z. Konefal, E. Lisicki, T. Marszalek, “The influence of energy migration in micellar dye solutions on the performance of dye lasers,” Acta Phys. Pol. A 52, 149–155 (1977).

Maeda, M.

K. Igarshi, M. Maeda, T. Takao, M. Uchiumi, I. Oki, K. Shimamoto, “Operation of Rhodamine 6G dye laser in water solution,” Jpn. J. Appl. Phys. 34, 3093–3096 (1995).
[CrossRef]

Magde, D.

D. Magde, G. E. Rojas, P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of Xanthene dyes,” Photochem. Photobiol. 70, 737–744 (1999).
[CrossRef]

Manohar, C.

V. K. Kelkar, B. S. Valaulikar, J. T. Kunjappu, C. Manohar, “Aggregation characteristics of laser dye Rhodamine 6G in aqueous surfactant solutions, “ Photochem. Photobiol. 52, 717–721 (1990).
[CrossRef]

Marszalek, T.

Z. Konefal, E. Lisicki, T. Marszalek, “The influence of energy migration in micellar dye solutions on the performance of dye lasers,” Acta Phys. Pol. A 52, 149–155 (1977).

Nair, S. K. S.

S. Sinha, A. K. Ray, S. Kundu, S. Kumar, S. K. S. Nair, K. Dasgupta, “Photostability of laser dye solutions under copper vapour laser excitation,” Appl. Phys. B 72, 617–621 (2001).
[CrossRef]

Oki, I.

K. Igarshi, M. Maeda, T. Takao, M. Uchiumi, I. Oki, K. Shimamoto, “Operation of Rhodamine 6G dye laser in water solution,” Jpn. J. Appl. Phys. 34, 3093–3096 (1995).
[CrossRef]

Peterson, O. G.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

O. G. Peterson, “Dye lasers,” in Methods of Experimental Physics: Quantum Electronics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15, part A, pp. 266–267,

Piper, J. A.

Rabinowitch, E.

E. Rabinowitch, L. F. Epstein, “Polymerization of dyestuffs in solution: thionine and methylene blue,” J. Am. Chem. Soc. 63, 69–78 (1941).
[CrossRef]

Ray, A. K.

S. Sinha, A. K. Ray, S. Kundu, S. Kumar, S. K. S. Nair, K. Dasgupta, “Photostability of laser dye solutions under copper vapour laser excitation,” Appl. Phys. B 72, 617–621 (2001).
[CrossRef]

Rojas, G. E.

D. Magde, G. E. Rojas, P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of Xanthene dyes,” Photochem. Photobiol. 70, 737–744 (1999).
[CrossRef]

Sanz-Medel, A.

M. E. Diaz Garcia, A. Sanz-Medel, “Dye-surfactant interactions: a review,” Talanta 33, 255–264 (1986).
[CrossRef]

Schafer, F. P.

F. P. Schafer, “Principles of dye laser operation,” in Dye Lasers, F. P. Schafer, ed. (Springer-Verlag, Berlin, 1977), pp. 21–24, 158–159.

Selwyn, J. E.

J. E. Selwyn, J. I. Steinfeld, “Aggregation equilibria of Xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
[CrossRef]

Seybold, P. G.

D. Magde, G. E. Rojas, P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of Xanthene dyes,” Photochem. Photobiol. 70, 737–744 (1999).
[CrossRef]

Shahinian, A. A.

A. A. Shahinian, “Correlation between the micelle structure and the lasing efficiency of micelle incorporated dye,” Laser Phys. 5, 711–718 (1995).

Shimamoto, K.

K. Igarshi, M. Maeda, T. Takao, M. Uchiumi, I. Oki, K. Shimamoto, “Operation of Rhodamine 6G dye laser in water solution,” Jpn. J. Appl. Phys. 34, 3093–3096 (1995).
[CrossRef]

Sinha, S.

S. Sinha, A. K. Ray, S. Kundu, S. Kumar, S. K. S. Nair, K. Dasgupta, “Photostability of laser dye solutions under copper vapour laser excitation,” Appl. Phys. B 72, 617–621 (2001).
[CrossRef]

Snavely, B. B.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

Steiger, R.

R. H. Baker, M. Gratzel, R. Steiger, “Drastic fluorescence enhancement and photochemical stabilization of cyanine dyes through micellar systems,” J. Am. Chem. Soc. 102, 847–848 (1980).
[CrossRef]

Steinfeld, J. I.

J. E. Selwyn, J. I. Steinfeld, “Aggregation equilibria of Xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
[CrossRef]

Takao, T.

K. Igarshi, M. Maeda, T. Takao, M. Uchiumi, I. Oki, K. Shimamoto, “Operation of Rhodamine 6G dye laser in water solution,” Jpn. J. Appl. Phys. 34, 3093–3096 (1995).
[CrossRef]

Tuccio, S. A.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

Uchiumi, M.

K. Igarshi, M. Maeda, T. Takao, M. Uchiumi, I. Oki, K. Shimamoto, “Operation of Rhodamine 6G dye laser in water solution,” Jpn. J. Appl. Phys. 34, 3093–3096 (1995).
[CrossRef]

Valaulikar, B. S.

V. K. Kelkar, B. S. Valaulikar, J. T. Kunjappu, C. Manohar, “Aggregation characteristics of laser dye Rhodamine 6G in aqueous surfactant solutions, “ Photochem. Photobiol. 52, 717–721 (1990).
[CrossRef]

Wallace, S. C.

G. A. K. Wallece, J. H. Flint, S. C. Wallace, “Resonance energy transfer between lasing dyes in micellar media,” Chem. Phys. Lett. 32, 71–75 (1975).
[CrossRef]

Wallece, G. A. K.

G. A. K. Wallece, J. H. Flint, S. C. Wallace, “Resonance energy transfer between lasing dyes in micellar media,” Chem. Phys. Lett. 32, 71–75 (1975).
[CrossRef]

Webb, C. E.

C. E. Webb, “High power dye lasers pumped by copper vapor lasers,” in High-Power Dye Lasers, F. J. Duarte, ed., Vol. 65 of Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 1991), pp. 177–179.

Zaitseva, N. E.

Kh. L. Arvan, N. E. Zaitseva, “Spectral investigation of the influence of the solvent on the aggregation of organic dyes,” Opt. Spectrosc. 10, 272–276 (1961).

Zwanzig, R.

C.-M. Hu, R. Zwanzig, “Rotational friction coefficients for spheriods with the slipping boundary condition,” J. Chem. Phys. 60, 4354–4357 (1974).
[CrossRef]

Acta Phys. Pol. A (1)

Z. Konefal, E. Lisicki, T. Marszalek, “The influence of energy migration in micellar dye solutions on the performance of dye lasers,” Acta Phys. Pol. A 52, 149–155 (1977).

Appl. Opt. (3)

Appl. Phys. B (1)

S. Sinha, A. K. Ray, S. Kundu, S. Kumar, S. K. S. Nair, K. Dasgupta, “Photostability of laser dye solutions under copper vapour laser excitation,” Appl. Phys. B 72, 617–621 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

O. G. Peterson, S. A. Tuccio, B. B. Snavely, “cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970).
[CrossRef]

Chem. Phys. Lett. (1)

G. A. K. Wallece, J. H. Flint, S. C. Wallace, “Resonance energy transfer between lasing dyes in micellar media,” Chem. Phys. Lett. 32, 71–75 (1975).
[CrossRef]

J. Am. Chem. Soc. (2)

E. Rabinowitch, L. F. Epstein, “Polymerization of dyestuffs in solution: thionine and methylene blue,” J. Am. Chem. Soc. 63, 69–78 (1941).
[CrossRef]

R. H. Baker, M. Gratzel, R. Steiger, “Drastic fluorescence enhancement and photochemical stabilization of cyanine dyes through micellar systems,” J. Am. Chem. Soc. 102, 847–848 (1980).
[CrossRef]

J. Chem. Phys. (1)

C.-M. Hu, R. Zwanzig, “Rotational friction coefficients for spheriods with the slipping boundary condition,” J. Chem. Phys. 60, 4354–4357 (1974).
[CrossRef]

J. Phys. Chem. (1)

J. E. Selwyn, J. I. Steinfeld, “Aggregation equilibria of Xanthene dyes,” J. Phys. Chem. 76, 762–774 (1972).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Igarshi, M. Maeda, T. Takao, M. Uchiumi, I. Oki, K. Shimamoto, “Operation of Rhodamine 6G dye laser in water solution,” Jpn. J. Appl. Phys. 34, 3093–3096 (1995).
[CrossRef]

Laser Phys. (1)

A. A. Shahinian, “Correlation between the micelle structure and the lasing efficiency of micelle incorporated dye,” Laser Phys. 5, 711–718 (1995).

Opt. Spectrosc. (1)

Kh. L. Arvan, N. E. Zaitseva, “Spectral investigation of the influence of the solvent on the aggregation of organic dyes,” Opt. Spectrosc. 10, 272–276 (1961).

Photochem. Photobiol. (2)

D. Magde, G. E. Rojas, P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of Xanthene dyes,” Photochem. Photobiol. 70, 737–744 (1999).
[CrossRef]

V. K. Kelkar, B. S. Valaulikar, J. T. Kunjappu, C. Manohar, “Aggregation characteristics of laser dye Rhodamine 6G in aqueous surfactant solutions, “ Photochem. Photobiol. 52, 717–721 (1990).
[CrossRef]

Talanta (1)

M. E. Diaz Garcia, A. Sanz-Medel, “Dye-surfactant interactions: a review,” Talanta 33, 255–264 (1986).
[CrossRef]

Other (7)

F. P. Schafer, “Principles of dye laser operation,” in Dye Lasers, F. P. Schafer, ed. (Springer-Verlag, Berlin, 1977), pp. 21–24, 158–159.

Ulrich Brackmann, Lambdachrome Laser-grade Dyes Data Sheets (Lambda Physik GmbH, Germany, 1986).

D. Klick, “Industrial application of dye lasers,” in Dye Laser Principles with Applications, (Academic, New York, 1990), pp. 345–398.
[CrossRef]

C. E. Webb, “High power dye lasers pumped by copper vapor lasers,” in High-Power Dye Lasers, F. J. Duarte, ed., Vol. 65 of Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 1991), pp. 177–179.

O. G. Peterson, “Dye lasers,” in Methods of Experimental Physics: Quantum Electronics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15, part A, pp. 266–267,

J. H. Fendler, E. J. Fendler, Micellar and Macromolecular Systems, (Academic, New York, 1975) p. 20.

K. Dasgupta, “Development of high repetition rate pulse dye lasers and their application in multistep excitation spectroscopy of atoms,” Ph.D. dissertation (University of Bombay, India, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption spectra (S1←S0) of aqueous solutions of Rhodamine-6G dye at concentrations (a) 1 × 10-5 mol/l, (b) 5 × 10-5 mol/l, and (c) 1 × 10-4 mol/l. As the dye concentration is increased, in addition to the regular λabs maximum at 530 nm, a second absorption peak appears at a shorter wavelength (480 nm) owing to the formation of dimers.

Fig. 2
Fig. 2

Absorption spectra of Rhodamine-6G dye solution at concentration 2 × 10-4 mol/l in (a) pure water, (b) aqueous solution of neutral surfactant, triton-x at concentration 40 mM, and (c) aqueous solution of anionic surfactant, SLS at concentration 40 mM. Surfactant aggregates (micelle) incorporate the dye molecules and inhibit the formation of dimers.

Fig. 3
Fig. 3

Effect of additive n-propanol on absorption spectra of aqueous solutions of Rhodamine-6G dye at concentration 2 × 10-4 mol/l. Absorption spectra of dye solution in (a) pure water solvent and (b) a mixture of water and 10% n-propanol solvent.

Fig. 4
Fig. 4

Fluorescence spectra of Rhodamine-6G dye solutions with different solvents such as (a) ethanol, (b) methanol, (c) mixture of water and surfactant, SLS at 40 mM, (d) mixture of water and surfactant, triton-x at 40 mM, (e) mixture of water and acetic acid (10% by volume), (f) mixture of water and n-propanol (10% by volume), and (g) pure water. We obtained fluorescence spectra by using 2 × 10-4 mol/l concentration of dye at excitation wavelength 510 nm and collecting front-edge emission at 40° angle to the direction of excitation.

Fig. 5
Fig. 5

Broadband efficiency of dye laser with Kiton Red dye (concentration 1.9 mM) dissolved in mixture of water-surfactant solvent at various concentrations of surfactant, SLS. The dye laser was pumped by the yellow component (at 578.2 nm) of a CVL (at 18W average power) operating at frequency 6.3 kHz. The use of pure water and pure ethanol as solvents with 1.9 mM concentration of Kiton Red dye solutions produced 1.5% and 20% laser efficiencies, respectively.

Fig. 6
Fig. 6

Narrow-band (∼0.1 cm-1) tuning curve of 0.8-mM Rhodamine-6G dye solutions using (a) water-SLS solvent (∼35 mM SLS) and (b) pure ethanol solvent. Dye lasers, in GIG configuration; were transversely pumped by the green component (at 510 nm) of a CVL. The average pump power of CVL was 8 W at 6.3 kHz.

Fig. 7
Fig. 7

Narrow-band (∼0.1 cm-1) tuning curve of Kiton Red dye lasers with (a) a pure ethanol solvent (dye concentration 1.9 mM), (b) a mixture of water-surfactant solvent, (dye concentration 1.9 mM, concentration of SLS ∼35 mM), and (c) a mixture of water-surfactant solvent (dye concentration 0.7 mM, concentration of SLS ∼30 mM). Dye lasers, in GIG configuration, were transversely pumped by the yellow component (at 578.2 nm) of a CVL. The average pump power of CVL was 9W at 6.3 kHz.

Fig. 8
Fig. 8

Schematic diagram of the dye laser in oscillator-amplifier configuration, transversely pumped by the green component of a copper vapor laser.

Fig. 9
Fig. 9

Peak lasing efficiency (near 575 nm) of Rhodamine-6G dye (at 0.7 mM concentration) amplifier with different solvents: (a) a mixture of water and 40 mM SLS, (b) a mixture of ethanol and 40 mM SLS, (c) pure ethanol, and (d) a mixture of water and 30% n-propanol. Both the pump and signal beams were polarized linearly in the vertical direction. The average power of CVL (at 510.8 nm) was ∼10 W.

Tables (2)

Tables Icon

Table 1 Fluorescence Quantum Yield of Rhodamine-6G dye solutions with Different Solventsa

Tables Icon

Table 2 Broadband Lasing Efficiencies of Rhodamine-6G Dye Pumped by Second Harmonic of a Nd:YAG Laser

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τor=ηV/kTf,

Metrics