Abstract

We have improved the hardware and software of our autocompensating system for quantum key distribution by replacing bulk optical components at the end stations with fiber-optic equivalents and implementing software that synchronizes end-station activities, communicates basis choices, corrects errors, and performs privacy amplification over a local area network. The all-fiber-optic arrangement provides stable, efficient, and high-contrast routing of the photons. The low-bit error rate leads to high error-correction efficiency and minimizes data sacrifice during privacy amplification. Characterization measurements made on a number of commercial avalanche photodiodes are presented that highlight the need for improved devices tailored specifically for quantum information applications. A scheme for frequency shifting the photons returning from Alice’s station to allow them to be distinguished from backscattered noise photons is also described.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the International Conference on Computer Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
    [CrossRef]
  3. B. Jacobs, J. D. Franson, “Quantum cryptography in free space,” Opt. Lett. 21, 1854–1856 (1996).
    [CrossRef] [PubMed]
  4. W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
    [CrossRef] [PubMed]
  5. J. D. Franson, H. Ives, “Quantum cryptography using optical fibers,” Appl. Opt. 33, 2949–2954 (1994).
    [CrossRef] [PubMed]
  6. P. Townsend, “Experimental investigation of the performance limits for first telecommunications window quantum cryptography systems,” IEEE Photon. Technol. Lett. 10, 1048–1050 (1998).
    [CrossRef]
  7. R. J. Hughes, G. L. Morgan, C. Glen, “Quantum key distribution over a 48 km optical fibre network,” J. Modern Opt. 47, 533–547 (2000).
  8. H. Zbinden, H. B. Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
    [CrossRef]
  9. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
    [CrossRef]
  10. H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
    [CrossRef]
  11. D. S. Bethune, W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
    [CrossRef]
  12. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
    [CrossRef]
  13. M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long-wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Express 4, 383–387 (1999) ( http://www.opticsexpress.org ).
  14. M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
    [CrossRef]
  15. Canadian Instrumentation & Research Ltd., 1155 Appleby Lane, Unit E8 Burlington, Ontario L7L 5H9, Canada ( http://www.cirl.com ).
  16. D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
    [CrossRef] [PubMed]
  17. E. Biham, T. Mor, “Bounds on information and the security of quantum cryptography,” Phys. Rev. Lett. 79, 4034–4037 (1997).
    [CrossRef]
  18. D. Mayers, A. Yao, “Quantum cryptography with imperfect apparatus,” in Proc. 39th Annual Symposium on Foundations of Computer Science (IEEE Computer Soc., Los Alamitos, Calif., 1998), pp. 503–509.
  19. B. A. Slutsky, R. Ramesh, P. C. Sung, Y. Fainman, “Security of quantum cryptography against individual attacks,” Phys. Rev. A 57, 2383–2398 (1998).
    [CrossRef]
  20. N. Lütkenhaus, “Quantum key distribution: theory for application,” Appl. Phys. B69, 395–400 (1999).
  21. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
    [CrossRef]
  22. G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [CrossRef] [PubMed]
  23. G. Gilbert, M. Hamrick, “Practical quantum cryptography: a comprehensive analysis (part I),” Mitre Technical Report MTR00W0000052 (Mitre Corporation, McLean, Va., 2000); available at http://xxx.lanl.gov/format/quant-ph/0009027v4 , Sept.20, 2000).
  24. F. Zappa, A. L. Lacaita, S. D. Cova, P. Lovati, “Solid state single photon detectors,” Opt. Eng. 35, 938–945 (1996).
    [CrossRef]
  25. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
    [CrossRef] [PubMed]
  26. G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
    [CrossRef]
  27. A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).
  28. J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, P. R. Tapster, “Single-photon counting for the 1300–1600-nm range by use of Peltier cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39, 6746–6753 (2000).
    [CrossRef]
  29. P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I. Gontijo, A. C. Walker, P. D. Townsend, M. J. Robertson, “Performance and design of InGaAs/InP photodiodes for single photon counting at 1.55 µm,” Appl. Opt. 39, 6818–6829 (2000).
    [CrossRef]
  30. L. Duraffourg, J. M. Merolla, J. P. Goedgebuer, N. Butterlin, W. T. Rhodes, “Photon counting in the 1540 nm wavelength region with a germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
    [CrossRef]
  31. A. Yoshizawa, H. Tsuchida, “A 1550 nm single photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, Part 1, 200–201 (2001).
    [CrossRef]
  32. G. Ribordy, J. Brendel, J-D. Gautier, N. Gisin, H. Zbinden, “Long-distance entanglement based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
    [CrossRef]
  33. Fujitsu Compound Semiconductor Inc., 2355 Zanker Rd., San Jose, Calif. 95131 ( http://www.fcsi.fujitsu.com ).
  34. NEC Optoelectronics has now become CEL Inc., California Eastern Laboratories, 4590 Patrick Henry Dr., Santa Clara, Calif. 95054 ( http://www.cel.com .
  35. EG&G Optoelectronics, now a part of Perkin-Elmer Optoelectronics, 22001 Dumberry Rd., Vaudreuil, Quebec J7V 8P7, Canada ( http://opto.perkinelmer.com ).
  36. Stanford Research Systems, 1290-D Reamwood Ave., Sunnyvale, Calif. 94089 ( http://www.srsys.com ).
  37. Avtech Electrosystems Ltd., P.O. Box 5120, LCD Merivale, Ottawa, Ontario, Canada K2C 3H4 ( http://www.avtechpulse.com ).
  38. Agilent Technologies Headquarters, 395 Page Mill Rd., P.O. Box 10395, Palo Alto, Calif. 94303 ( http://www.tm.agilent.com ).
  39. Minicircuits, Headquarters P.O. Box 350166, Brooklyn, N.Y. 11235 ( http://www.minicircuits.com ).
  40. Lecroy Corporation, 700 Chestnut Ridge Road, Chestnut Ridge, N.Y. 10977-6499 ( http://www.lecroy.com ).
  41. National Instruments Corporation, 11500 N. Mopac Expressway, Austin, Tex. 78759-3504 ( http://www.ni.com ).
  42. Defined in this way, K is proportional to the inverse square of a device’s noise equivalent power, NEP = (hv/QE) × (2D)1/2. For our parameters a K of 20,000 corresponds to an NEP ∼5 × 10-18 W/Hz1/2. The reader should bear in mind that this is a gated detection setup, with the signal power confined to time windows that are open for a fraction of time of order 10-3.
  43. JDS Uniphase Corporation, 210 Baypointe Parkway, San Jose, Calif. 95134 ( http://www.jdsuniphase.com ).
  44. Innovative Fibers, now a part of Alcatel Optronics, Route de Villejust, 91625 Nozay Cedex, France ( http://www.alcatel.com/telecom/optronics ).
  45. H. A. Haus, C. V. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. QE-12, 531–539 (1976).
  46. G. P. Agrawal, S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
    [CrossRef]
  47. T. Ergodan, “Fiber grating spectra,” IEEE J. Lightwave Tech. 15, 1277–1294 (1997).
    [CrossRef]

2001 (3)

L. Duraffourg, J. M. Merolla, J. P. Goedgebuer, N. Butterlin, W. T. Rhodes, “Photon counting in the 1540 nm wavelength region with a germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

A. Yoshizawa, H. Tsuchida, “A 1550 nm single photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, Part 1, 200–201 (2001).
[CrossRef]

G. Ribordy, J. Brendel, J-D. Gautier, N. Gisin, H. Zbinden, “Long-distance entanglement based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[CrossRef]

2000 (7)

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[CrossRef]

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

R. J. Hughes, G. L. Morgan, C. Glen, “Quantum key distribution over a 48 km optical fibre network,” J. Modern Opt. 47, 533–547 (2000).

D. S. Bethune, W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
[CrossRef]

W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
[CrossRef] [PubMed]

J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, P. R. Tapster, “Single-photon counting for the 1300–1600-nm range by use of Peltier cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39, 6746–6753 (2000).
[CrossRef]

P. A. Hiskett, G. S. Buller, A. Y. Loudon, J. M. Smith, I. Gontijo, A. C. Walker, P. D. Townsend, M. J. Robertson, “Performance and design of InGaAs/InP photodiodes for single photon counting at 1.55 µm,” Appl. Opt. 39, 6818–6829 (2000).
[CrossRef]

1999 (3)

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long-wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Express 4, 383–387 (1999) ( http://www.opticsexpress.org ).

N. Lütkenhaus, “Quantum key distribution: theory for application,” Appl. Phys. B69, 395–400 (1999).

A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).

1998 (6)

G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

B. A. Slutsky, R. Ramesh, P. C. Sung, Y. Fainman, “Security of quantum cryptography against individual attacks,” Phys. Rev. A 57, 2383–2398 (1998).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

H. Zbinden, H. B. Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[CrossRef]

P. Townsend, “Experimental investigation of the performance limits for first telecommunications window quantum cryptography systems,” IEEE Photon. Technol. Lett. 10, 1048–1050 (1998).
[CrossRef]

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
[CrossRef]

1997 (3)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

E. Biham, T. Mor, “Bounds on information and the security of quantum cryptography,” Phys. Rev. Lett. 79, 4034–4037 (1997).
[CrossRef]

T. Ergodan, “Fiber grating spectra,” IEEE J. Lightwave Tech. 15, 1277–1294 (1997).
[CrossRef]

1996 (4)

B. Jacobs, J. D. Franson, “Quantum cryptography in free space,” Opt. Lett. 21, 1854–1856 (1996).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

F. Zappa, A. L. Lacaita, S. D. Cova, P. Lovati, “Solid state single photon detectors,” Opt. Eng. 35, 938–945 (1996).
[CrossRef]

1994 (2)

J. D. Franson, H. Ives, “Quantum cryptography using optical fibers,” Appl. Opt. 33, 2949–2954 (1994).
[CrossRef] [PubMed]

G. P. Agrawal, S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

1992 (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[CrossRef]

1989 (1)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

1976 (1)

H. A. Haus, C. V. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. QE-12, 531–539 (1976).

Agrawal, G. P.

G. P. Agrawal, S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[CrossRef]

C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the International Conference on Computer Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[CrossRef]

Bethune, D. S.

D. S. Bethune, W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
[CrossRef]

Biham, E.

E. Biham, T. Mor, “Bounds on information and the security of quantum cryptography,” Phys. Rev. Lett. 79, 4034–4037 (1997).
[CrossRef]

Bourennane, M.

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long-wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Express 4, 383–387 (1999) ( http://www.opticsexpress.org ).

A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[CrossRef]

C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the International Conference on Computer Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

Brendel, J.

G. Ribordy, J. Brendel, J-D. Gautier, N. Gisin, H. Zbinden, “Long-distance entanglement based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[CrossRef]

A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).

Buller, G. S.

Butterlin, N.

L. Duraffourg, J. M. Merolla, J. P. Goedgebuer, N. Butterlin, W. T. Rhodes, “Photon counting in the 1540 nm wavelength region with a germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Buttler, W. T.

W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
[CrossRef] [PubMed]

Cova, S.

Cova, S. D.

F. Zappa, A. L. Lacaita, S. D. Cova, P. Lovati, “Solid state single photon detectors,” Opt. Eng. 35, 938–945 (1996).
[CrossRef]

Deutsch, D.

D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Duraffourg, L.

L. Duraffourg, J. M. Merolla, J. P. Goedgebuer, N. Butterlin, W. T. Rhodes, “Photon counting in the 1540 nm wavelength region with a germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Ekert, A.

D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Ergodan, T.

T. Ergodan, “Fiber grating spectra,” IEEE J. Lightwave Tech. 15, 1277–1294 (1997).
[CrossRef]

Fainman, Y.

B. A. Slutsky, R. Ramesh, P. C. Sung, Y. Fainman, “Security of quantum cryptography against individual attacks,” Phys. Rev. A 57, 2383–2398 (1998).
[CrossRef]

Franson, J. D.

Gautier, J. D.

G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
[CrossRef]

Gautier, J-D.

G. Ribordy, J. Brendel, J-D. Gautier, N. Gisin, H. Zbinden, “Long-distance entanglement based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[CrossRef]

Ghioni, M.

Gibson, F.

Gilbert, G.

G. Gilbert, M. Hamrick, “Practical quantum cryptography: a comprehensive analysis (part I),” Mitre Technical Report MTR00W0000052 (Mitre Corporation, McLean, Va., 2000); available at http://xxx.lanl.gov/format/quant-ph/0009027v4 , Sept.20, 2000).

Gisin, N.

G. Ribordy, J. Brendel, J-D. Gautier, N. Gisin, H. Zbinden, “Long-distance entanglement based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[CrossRef]

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
[CrossRef]

H. Zbinden, H. B. Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Glen, C.

R. J. Hughes, G. L. Morgan, C. Glen, “Quantum key distribution over a 48 km optical fibre network,” J. Modern Opt. 47, 533–547 (2000).

Goedgebuer, J. P.

L. Duraffourg, J. M. Merolla, J. P. Goedgebuer, N. Butterlin, W. T. Rhodes, “Photon counting in the 1540 nm wavelength region with a germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Gontijo, I.

Guinnard, O.

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

Hamrick, M.

G. Gilbert, M. Hamrick, “Practical quantum cryptography: a comprehensive analysis (part I),” Mitre Technical Report MTR00W0000052 (Mitre Corporation, McLean, Va., 2000); available at http://xxx.lanl.gov/format/quant-ph/0009027v4 , Sept.20, 2000).

Haus, H. A.

H. A. Haus, C. V. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. QE-12, 531–539 (1976).

Hening, A.

Herzog, T.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Hiskett, P. A.

Hughes, R. J.

R. J. Hughes, G. L. Morgan, C. Glen, “Quantum key distribution over a 48 km optical fibre network,” J. Modern Opt. 47, 533–547 (2000).

W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
[CrossRef] [PubMed]

Huttner, B.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Ives, H.

Jacobs, B.

Jonsson, P.

Jozsa, R.

D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Karlsson, A.

A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).

M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, E. Sundberg, “Experiments on long-wavelength (1550 nm) ‘plug and play’ quantum cryptography systems,” Opt. Express 4, 383–387 (1999) ( http://www.opticsexpress.org ).

Lacaita, A.

Lacaita, A. L.

F. Zappa, A. L. Lacaita, S. D. Cova, P. Lovati, “Solid state single photon detectors,” Opt. Eng. 35, 938–945 (1996).
[CrossRef]

Lamoreaux, S. K.

W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
[CrossRef] [PubMed]

Ljunggren, D.

Loudon, A. Y.

Lovati, P.

F. Zappa, A. L. Lacaita, S. D. Cova, P. Lovati, “Solid state single photon detectors,” Opt. Eng. 35, 938–945 (1996).
[CrossRef]

Lütkenhaus, N.

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[CrossRef]

N. Lütkenhaus, “Quantum key distribution: theory for application,” Appl. Phys. B69, 395–400 (1999).

Macchiavello, R.

D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Martinelli, M.

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Mayers, D.

D. Mayers, A. Yao, “Quantum cryptography with imperfect apparatus,” in Proc. 39th Annual Symposium on Foundations of Computer Science (IEEE Computer Soc., Los Alamitos, Calif., 1998), pp. 503–509.

Merolla, J. M.

L. Duraffourg, J. M. Merolla, J. P. Goedgebuer, N. Butterlin, W. T. Rhodes, “Photon counting in the 1540 nm wavelength region with a germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

E. Biham, T. Mor, “Bounds on information and the security of quantum cryptography,” Phys. Rev. Lett. 79, 4034–4037 (1997).
[CrossRef]

Morgan, G. L.

W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
[CrossRef] [PubMed]

R. J. Hughes, G. L. Morgan, C. Glen, “Quantum key distribution over a 48 km optical fibre network,” J. Modern Opt. 47, 533–547 (2000).

Muller, A.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Nordholt, J. E.

W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
[CrossRef] [PubMed]

Owens, P. C. M.

Pasquinucci, H. B.

H. Zbinden, H. B. Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[CrossRef]

Peterson, C. G.

W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
[CrossRef] [PubMed]

Popescu, S.

D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Radic, S.

G. P. Agrawal, S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

Ramesh, R.

B. A. Slutsky, R. Ramesh, P. C. Sung, Y. Fainman, “Security of quantum cryptography against individual attacks,” Phys. Rev. A 57, 2383–2398 (1998).
[CrossRef]

Rarity, J.

A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).

Rarity, J. G.

Rhodes, W. T.

L. Duraffourg, J. M. Merolla, J. P. Goedgebuer, N. Butterlin, W. T. Rhodes, “Photon counting in the 1540 nm wavelength region with a germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Ribordy, G.

G. Ribordy, J. Brendel, J-D. Gautier, N. Gisin, H. Zbinden, “Long-distance entanglement based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[CrossRef]

A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).

G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

H. Zbinden, H. B. Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[CrossRef]

Ridley, K. D.

Risk, W. P.

D. S. Bethune, W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
[CrossRef]

Robertson, M. J.

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[CrossRef]

Samori, C.

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

Sanpera, A.

D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Shank, C. V.

H. A. Haus, C. V. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. QE-12, 531–539 (1976).

Slutsky, B. A.

B. A. Slutsky, R. Ramesh, P. C. Sung, Y. Fainman, “Security of quantum cryptography against individual attacks,” Phys. Rev. A 57, 2383–2398 (1998).
[CrossRef]

Smith, J. M.

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[CrossRef]

Sundberg, E.

Sung, P. C.

B. A. Slutsky, R. Ramesh, P. C. Sung, Y. Fainman, “Security of quantum cryptography against individual attacks,” Phys. Rev. A 57, 2383–2398 (1998).
[CrossRef]

Tapster, P.

A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).

Tapster, P. R.

Tittel, W.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Townsend, P.

P. Townsend, “Experimental investigation of the performance limits for first telecommunications window quantum cryptography systems,” IEEE Photon. Technol. Lett. 10, 1048–1050 (1998).
[CrossRef]

Townsend, P. D.

Tsegaye, T.

Tsuchida, H.

A. Yoshizawa, H. Tsuchida, “A 1550 nm single photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, Part 1, 200–201 (2001).
[CrossRef]

Walker, A. C.

Wall, T. E.

Yao, A.

D. Mayers, A. Yao, “Quantum cryptography with imperfect apparatus,” in Proc. 39th Annual Symposium on Foundations of Computer Science (IEEE Computer Soc., Los Alamitos, Calif., 1998), pp. 503–509.

Yoshizawa, A.

A. Yoshizawa, H. Tsuchida, “A 1550 nm single photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, Part 1, 200–201 (2001).
[CrossRef]

Zappa, F.

Zbinden, H.

G. Ribordy, J. Brendel, J-D. Gautier, N. Gisin, H. Zbinden, “Long-distance entanglement based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[CrossRef]

A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).

G. Ribordy, J. D. Gautier, H. Zbinden, N. Gisin, “Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters,” Appl. Opt. 37, 2272–2277 (1998).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
[CrossRef]

H. Zbinden, H. B. Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. (1)

N. Lütkenhaus, “Quantum key distribution: theory for application,” Appl. Phys. B69, 395–400 (1999).

Appl. Phys. B (1)

H. Zbinden, H. B. Pasquinucci, N. Gisin, G. Ribordy, “Quantum cryptography,” Appl. Phys. B 67, 743–748 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[CrossRef]

Electron. Lett. (2)

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel, “Interferometry with Faraday mirrors for quantum cryptography,” Electron. Lett. 33, 586–588 (1998).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Electron. Lett. 34, 2116–2117 (1998).
[CrossRef]

IEEE Circuits Dev. Mag. (1)

A. Karlsson, M. Bourennane, G. Ribordy, H. Zbinden, J. Brendel, J. Rarity, P. Tapster, “A single photon counter for long haul telecom,” IEEE Circuits Dev. Mag. 15(6), 34–40 (November1999).

IEEE J. Lightwave Tech. (1)

T. Ergodan, “Fiber grating spectra,” IEEE J. Lightwave Tech. 15, 1277–1294 (1997).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. A. Haus, C. V. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. QE-12, 531–539 (1976).

L. Duraffourg, J. M. Merolla, J. P. Goedgebuer, N. Butterlin, W. T. Rhodes, “Photon counting in the 1540 nm wavelength region with a germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

D. S. Bethune, W. P. Risk, “An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light,” IEEE J. Quantum Electron. 36, 340–347 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Townsend, “Experimental investigation of the performance limits for first telecommunications window quantum cryptography systems,” IEEE Photon. Technol. Lett. 10, 1048–1050 (1998).
[CrossRef]

G. P. Agrawal, S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

J. Cryptol. (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[CrossRef]

J. Modern Opt. (1)

R. J. Hughes, G. L. Morgan, C. Glen, “Quantum key distribution over a 48 km optical fibre network,” J. Modern Opt. 47, 533–547 (2000).

Jpn. J. Appl. Phys. (1)

A. Yoshizawa, H. Tsuchida, “A 1550 nm single photon detector using a thermoelectrically cooled InGaAs avalanche photodiode,” Jpn. J. Appl. Phys. 40, Part 1, 200–201 (2001).
[CrossRef]

Opt. Commun. (1)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Opt. Eng. (1)

F. Zappa, A. L. Lacaita, S. D. Cova, P. Lovati, “Solid state single photon detectors,” Opt. Eng. 35, 938–945 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (3)

G. Ribordy, J. Brendel, J-D. Gautier, N. Gisin, H. Zbinden, “Long-distance entanglement based quantum key distribution,” Phys. Rev. A 63, 012309 (2001).
[CrossRef]

B. A. Slutsky, R. Ramesh, P. C. Sung, Y. Fainman, “Security of quantum cryptography against individual attacks,” Phys. Rev. A 57, 2383–2398 (1998).
[CrossRef]

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, R. Macchiavello, S. Popescu, A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

E. Biham, T. Mor, “Bounds on information and the security of quantum cryptography,” Phys. Rev. Lett. 79, 4034–4037 (1997).
[CrossRef]

W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, C. G. Peterson, “Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652–5655 (2000).
[CrossRef] [PubMed]

Other (16)

C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the International Conference on Computer Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

Fujitsu Compound Semiconductor Inc., 2355 Zanker Rd., San Jose, Calif. 95131 ( http://www.fcsi.fujitsu.com ).

NEC Optoelectronics has now become CEL Inc., California Eastern Laboratories, 4590 Patrick Henry Dr., Santa Clara, Calif. 95054 ( http://www.cel.com .

EG&G Optoelectronics, now a part of Perkin-Elmer Optoelectronics, 22001 Dumberry Rd., Vaudreuil, Quebec J7V 8P7, Canada ( http://opto.perkinelmer.com ).

Stanford Research Systems, 1290-D Reamwood Ave., Sunnyvale, Calif. 94089 ( http://www.srsys.com ).

Avtech Electrosystems Ltd., P.O. Box 5120, LCD Merivale, Ottawa, Ontario, Canada K2C 3H4 ( http://www.avtechpulse.com ).

Agilent Technologies Headquarters, 395 Page Mill Rd., P.O. Box 10395, Palo Alto, Calif. 94303 ( http://www.tm.agilent.com ).

Minicircuits, Headquarters P.O. Box 350166, Brooklyn, N.Y. 11235 ( http://www.minicircuits.com ).

Lecroy Corporation, 700 Chestnut Ridge Road, Chestnut Ridge, N.Y. 10977-6499 ( http://www.lecroy.com ).

National Instruments Corporation, 11500 N. Mopac Expressway, Austin, Tex. 78759-3504 ( http://www.ni.com ).

Defined in this way, K is proportional to the inverse square of a device’s noise equivalent power, NEP = (hv/QE) × (2D)1/2. For our parameters a K of 20,000 corresponds to an NEP ∼5 × 10-18 W/Hz1/2. The reader should bear in mind that this is a gated detection setup, with the signal power confined to time windows that are open for a fraction of time of order 10-3.

JDS Uniphase Corporation, 210 Baypointe Parkway, San Jose, Calif. 95134 ( http://www.jdsuniphase.com ).

Innovative Fibers, now a part of Alcatel Optronics, Route de Villejust, 91625 Nozay Cedex, France ( http://www.alcatel.com/telecom/optronics ).

D. Mayers, A. Yao, “Quantum cryptography with imperfect apparatus,” in Proc. 39th Annual Symposium on Foundations of Computer Science (IEEE Computer Soc., Los Alamitos, Calif., 1998), pp. 503–509.

G. Gilbert, M. Hamrick, “Practical quantum cryptography: a comprehensive analysis (part I),” Mitre Technical Report MTR00W0000052 (Mitre Corporation, McLean, Va., 2000); available at http://xxx.lanl.gov/format/quant-ph/0009027v4 , Sept.20, 2000).

Canadian Instrumentation & Research Ltd., 1155 Appleby Lane, Unit E8 Burlington, Ontario L7L 5H9, Canada ( http://www.cirl.com ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

DFB laser emits 50-ps pulses at 1-MHz rate. PBS1,2, fiber-optic polarizing beam splitters; WDM, wavelength division multiplexers for 1.31 and 1.55 µm; FM, Faraday mirror; BS, fiber-optic beam splitter; ModA,B, APE LiNbO3 phase modulators; D0,1, Fujitsu FPD5W1KSF InGaAs avalanche photodiodes at 118 K. The fast-slow coupler is an ordinary FCPC coupler with the two key slots rotated 90° apart.

Fig. 2
Fig. 2

Count rates versus detector bias pulse delay for relative phase shifts Δϕ = 0, π. Contrast ratios are 29.7 and 26.9 dB, respectively. The detector dark rates (at 1 MHz bias rate) are ∼40/s. Backscattered 1.31-µm light also contributes to the off-peak counting rates. The pulse intensity was increased to 0.9 photon/pulse for these measurements to increase the count rate for the switched-off channel (normally small compared to that of the dark count rates).

Fig. 3
Fig. 3

(a) Data for 10-km fiber; (b) data for 20-km fiber. Raw (■), error corrected (○), and privacy amplified (△) bit rates and measured bit error rates (◇) versus the mean number of photons/pulse, μ, leaving Alice’s station. The leakage rate to Eve is estimated by use of the original BB84 formula (see text). All curves are simple fits provided as guides to the eye.

Fig. 4
Fig. 4

Single-photon counting APD test setup. Master clock is a SRS-DG53536 that triggers an Avtech37 AVO-9C laser driver and the HP8131A bias pulse generator.38 Minicircuits39 ZFRSC42 or ZFRSC2-2 splitters, ZFL2000 amplifiers, and ZEM2B mixers are used for the APD output electronics, feeding a Lecroy40 4608c discriminator. DL1 and DL2 are matched 6.5-ns delay lines attached by SMA tees to the anode and cathode of the APD. DL1 is unterminated, while DL2 is shorted.

Fig. 5
Fig. 5

Dark counts/bias pulse vs APD QE for various APD’s with 1.31 µm light at their optimum temperatures. The DC bias voltage was varied over ∼3 V in 50 mV steps to trace the curves. APDs 7 and 8 are the devices used in the quantum cryptography experiments, with typical operating points within the dashed circle.

Fig. 6
Fig. 6

K values for Fujitsu FPD5W1KSF APD (2 in Table 1) versus dc bias voltage for various temperatures (see text).

Fig. 7
Fig. 7

Maximum K values attained versus T for various detectors. The NEC NDL5151P1 Ge APD (8 in Table 1) was tested only at 77 K.

Fig. 8
Fig. 8

Schematic of setup for frequency shifting photons at Alice’s station using a 1-GHz acousto-optic Bragg cell. In double-passing the cell, the photons are shifted up in frequency by 2 GHz. The narrow-band cw laser/amplitude modulator combination produces 1-ns pulses with near-Fourier-transform-limited bandwidth. Bob uses an Innovative Fibers44 phase-shifted double Bragg grating fiber-optic filter with FWHM of ∼1 GHz to transmit the frequency-shifted pulses and reject unshifted, scattered light. The filter blocking band is ∼175 GHz wide.

Fig. 9
Fig. 9

Detection rate versus tunable laser wavelength with 2-GHz acousto-optic shifter at Alice’s station. Data is fitted with three Lorentzians: peak 1 is the desired peak for returning shifted pulses, while unshifted peaks 2 (dashed curve) and 3 (solid curve) are due to leakage of narrow-band cw light through the amplitude modulator and backscattering of outgoing pulses, respectively. In addition, a broadband background of ∼700 counts/s due to backscattering of laser superfluorescence underlies the spectrum.

Tables (1)

Tables Icon

Table 1 Avalanche Photodiodes Testeda

Metrics