Abstract

We report on the implementation of a dense 512-beam free-space optical interconnect linking four optoelectronic VLSI chips at the backplane level. The system presented maximizes the positioning tolerances of the components by use of slow f-number (f/16) Gaussian beams and oversized apertures. A beam-clustering scheme whereby a 4 × 4 array of beams is transmitted by each minilens is used to provide a high channel density. A modular approach is used to decrease the number of degrees of freedom in the system and achieve passive alignment of the modules in the final integration phase. A design overview as well as assembly and experimental results are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, Calif., 1997), p. B1. See www.sematech.org .
  2. International Technology Roadmap for Semiconductor 1998 Update (Semiconductor Industry Association, San Jose, Calif., 1998), p. 4. See www.sematech.org .
  3. D. A. B. Miller, “Physical reasons for optical interconnections,” Int. J. Optoelectron. 11, 155–168 (1997).
  4. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” J. Sel. Top. Quantum Electron. 2, p. 3–13 (1996).
    [CrossRef]
  5. F. A. P. Tooley, A. Z. Shang, B. Robertson, “Alignment tolerant smart pixels,” in Advanced Applications of Lasers in Materials Processing/Broadband Optical Networks/Enabling Technologies and Applications/Smart Pixels/Optical MEM’s and Their Applications: IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 55–56.
  6. K. Hirabayashi, T. Yamamoto, S. Hino, “Optical backplane with free-space optical interconnections using tunable beams deflectors and a mirror for bookshelf-assembled terabit per second class asynchronous transfer mode switch,” Opt. Eng. 37, 1332–1342 (1998).
    [CrossRef]
  7. M. A. Neifeld, R. K. Kostuk, “Error correction for free-space optical interconnects: space-time resource optimization,” Appl. Opt. 37, 296–307 (1998).
    [CrossRef]
  8. F. Lacroix, M. Chateauneuf, X. Xue, A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects,” Appl. Opt. 39, 704–713 (2000).
    [CrossRef]
  9. T. H. Szymanski, H. S. Hinton, “A reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
    [CrossRef] [PubMed]
  10. B. Robertson, “Design of an optical interconnect for photonics backplane applications,” Appl. Opt. 37, 2974–2984 (1998).
    [CrossRef]
  11. D. F. Brosseau, F. Lacroix, M. H. Ayliffe, E. Bernier, B. Robertson, F. A. P. Tooley, D. V. Plant, A. G. Kirk, “Design, implementation, and characterization of a kinematically aligned, cascaded spot-array generator for a modulator-based free-space optical interconnect,” Appl. Opt. 39, 733–745 (2000).
    [CrossRef]
  12. D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
    [CrossRef]
  13. F. Lacroix, “Analysis and implementation of a clustered, scalable and misalignment tolerant optical interconnect,” Master’s thesis (McGill University, Montréal, Québec, Canada, 1999).
  14. M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
    [CrossRef]
  15. B. Robertson, Y. Liu, G. C. Boisset, M. R. Tagizadeh, D. V. Plant, “In-situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 37, 9253–9260 (1998).
  16. J. Jahns, “Diffractive optical elements for optical computers,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, Boston, 1994), Chap. 6, pp. 137–167.
  17. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
    [CrossRef]
  18. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

2000

1998

K. Hirabayashi, T. Yamamoto, S. Hino, “Optical backplane with free-space optical interconnections using tunable beams deflectors and a mirror for bookshelf-assembled terabit per second class asynchronous transfer mode switch,” Opt. Eng. 37, 1332–1342 (1998).
[CrossRef]

M. A. Neifeld, R. K. Kostuk, “Error correction for free-space optical interconnects: space-time resource optimization,” Appl. Opt. 37, 296–307 (1998).
[CrossRef]

B. Robertson, Y. Liu, G. C. Boisset, M. R. Tagizadeh, D. V. Plant, “In-situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 37, 9253–9260 (1998).

B. Robertson, “Design of an optical interconnect for photonics backplane applications,” Appl. Opt. 37, 2974–2984 (1998).
[CrossRef]

1997

D. A. B. Miller, “Physical reasons for optical interconnections,” Int. J. Optoelectron. 11, 155–168 (1997).

1996

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” J. Sel. Top. Quantum Electron. 2, p. 3–13 (1996).
[CrossRef]

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
[CrossRef]

T. H. Szymanski, H. S. Hinton, “A reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
[CrossRef] [PubMed]

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Ayliffe, M. H.

D. F. Brosseau, F. Lacroix, M. H. Ayliffe, E. Bernier, B. Robertson, F. A. P. Tooley, D. V. Plant, A. G. Kirk, “Design, implementation, and characterization of a kinematically aligned, cascaded spot-array generator for a modulator-based free-space optical interconnect,” Appl. Opt. 39, 733–745 (2000).
[CrossRef]

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
[CrossRef]

Bernier, E.

D. F. Brosseau, F. Lacroix, M. H. Ayliffe, E. Bernier, B. Robertson, F. A. P. Tooley, D. V. Plant, A. G. Kirk, “Design, implementation, and characterization of a kinematically aligned, cascaded spot-array generator for a modulator-based free-space optical interconnect,” Appl. Opt. 39, 733–745 (2000).
[CrossRef]

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
[CrossRef]

Boisset, G. C.

B. Robertson, Y. Liu, G. C. Boisset, M. R. Tagizadeh, D. V. Plant, “In-situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 37, 9253–9260 (1998).

Brosseau, D. F.

Chateauneuf, M.

Chirovsky, L. M. F.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Cunningham, J. E.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

D’Asaro, L. A.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Dahringer, D.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Desai, P.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

Goossen, K. W.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Hino, S.

K. Hirabayashi, T. Yamamoto, S. Hino, “Optical backplane with free-space optical interconnections using tunable beams deflectors and a mirror for bookshelf-assembled terabit per second class asynchronous transfer mode switch,” Opt. Eng. 37, 1332–1342 (1998).
[CrossRef]

Hinton, H. S.

T. H. Szymanski, H. S. Hinton, “A reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
[CrossRef] [PubMed]

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, T. Yamamoto, S. Hino, “Optical backplane with free-space optical interconnections using tunable beams deflectors and a mirror for bookshelf-assembled terabit per second class asynchronous transfer mode switch,” Opt. Eng. 37, 1332–1342 (1998).
[CrossRef]

Hsiao, W. S.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

Hui, S. P.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Jahns, J.

J. Jahns, “Diffractive optical elements for optical computers,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, Boston, 1994), Chap. 6, pp. 137–167.

Jan, W. Y.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

Kabal, D.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
[CrossRef]

Khurana, P.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
[CrossRef]

Kirk, A. G.

Kossives, D.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Kostuk, R. K.

Krishnamoorthy, A. V.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Lacroix, F.

F. Lacroix, M. Chateauneuf, X. Xue, A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects,” Appl. Opt. 39, 704–713 (2000).
[CrossRef]

D. F. Brosseau, F. Lacroix, M. H. Ayliffe, E. Bernier, B. Robertson, F. A. P. Tooley, D. V. Plant, A. G. Kirk, “Design, implementation, and characterization of a kinematically aligned, cascaded spot-array generator for a modulator-based free-space optical interconnect,” Appl. Opt. 39, 733–745 (2000).
[CrossRef]

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
[CrossRef]

F. Lacroix, “Analysis and implementation of a clustered, scalable and misalignment tolerant optical interconnect,” Master’s thesis (McGill University, Montréal, Québec, Canada, 1999).

Leibenguth, R. E.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Lentine, A. L.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Liu, Y.

B. Robertson, Y. Liu, G. C. Boisset, M. R. Tagizadeh, D. V. Plant, “In-situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 37, 9253–9260 (1998).

Miller, D. A. B.

D. A. B. Miller, “Physical reasons for optical interconnections,” Int. J. Optoelectron. 11, 155–168 (1997).

Neifeld, M. A.

Plant, D. V.

D. F. Brosseau, F. Lacroix, M. H. Ayliffe, E. Bernier, B. Robertson, F. A. P. Tooley, D. V. Plant, A. G. Kirk, “Design, implementation, and characterization of a kinematically aligned, cascaded spot-array generator for a modulator-based free-space optical interconnect,” Appl. Opt. 39, 733–745 (2000).
[CrossRef]

B. Robertson, Y. Liu, G. C. Boisset, M. R. Tagizadeh, D. V. Plant, “In-situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 37, 9253–9260 (1998).

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
[CrossRef]

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

Robertson, B.

D. F. Brosseau, F. Lacroix, M. H. Ayliffe, E. Bernier, B. Robertson, F. A. P. Tooley, D. V. Plant, A. G. Kirk, “Design, implementation, and characterization of a kinematically aligned, cascaded spot-array generator for a modulator-based free-space optical interconnect,” Appl. Opt. 39, 733–745 (2000).
[CrossRef]

B. Robertson, “Design of an optical interconnect for photonics backplane applications,” Appl. Opt. 37, 2974–2984 (1998).
[CrossRef]

B. Robertson, Y. Liu, G. C. Boisset, M. R. Tagizadeh, D. V. Plant, “In-situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 37, 9253–9260 (1998).

F. A. P. Tooley, A. Z. Shang, B. Robertson, “Alignment tolerant smart pixels,” in Advanced Applications of Lasers in Materials Processing/Broadband Optical Networks/Enabling Technologies and Applications/Smart Pixels/Optical MEM’s and Their Applications: IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 55–56.

Rolston, D. R.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

Shang, A. Z.

F. A. P. Tooley, A. Z. Shang, B. Robertson, “Alignment tolerant smart pixels,” in Advanced Applications of Lasers in Materials Processing/Broadband Optical Networks/Enabling Technologies and Applications/Smart Pixels/Optical MEM’s and Their Applications: IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 55–56.

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

Szymanski, T. H.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

T. H. Szymanski, H. S. Hinton, “A reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996).
[CrossRef] [PubMed]

Tagizadeh, M. R.

B. Robertson, Y. Liu, G. C. Boisset, M. R. Tagizadeh, D. V. Plant, “In-situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 37, 9253–9260 (1998).

Tolley, F. A. P.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
[CrossRef]

Tooley, F. A. P.

D. F. Brosseau, F. Lacroix, M. H. Ayliffe, E. Bernier, B. Robertson, F. A. P. Tooley, D. V. Plant, A. G. Kirk, “Design, implementation, and characterization of a kinematically aligned, cascaded spot-array generator for a modulator-based free-space optical interconnect,” Appl. Opt. 39, 733–745 (2000).
[CrossRef]

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” J. Sel. Top. Quantum Electron. 2, p. 3–13 (1996).
[CrossRef]

F. A. P. Tooley, A. Z. Shang, B. Robertson, “Alignment tolerant smart pixels,” in Advanced Applications of Lasers in Materials Processing/Broadband Optical Networks/Enabling Technologies and Applications/Smart Pixels/Optical MEM’s and Their Applications: IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 55–56.

Tseng, B.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

Venditti, M. B.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

Walker, J. A.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Woodward, T. K.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Xue, X.

Yamamoto, T.

K. Hirabayashi, T. Yamamoto, S. Hino, “Optical backplane with free-space optical interconnections using tunable beams deflectors and a mirror for bookshelf-assembled terabit per second class asynchronous transfer mode switch,” Opt. Eng. 37, 1332–1342 (1998).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996).
[CrossRef]

Int. J. Optoelectron.

D. A. B. Miller, “Physical reasons for optical interconnections,” Int. J. Optoelectron. 11, 155–168 (1997).

J. Opt. A.

M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996).
[CrossRef]

J. Sel. Top. Quantum Electron.

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” J. Sel. Top. Quantum Electron. 2, p. 3–13 (1996).
[CrossRef]

Opt. Eng.

K. Hirabayashi, T. Yamamoto, S. Hino, “Optical backplane with free-space optical interconnections using tunable beams deflectors and a mirror for bookshelf-assembled terabit per second class asynchronous transfer mode switch,” Opt. Eng. 37, 1332–1342 (1998).
[CrossRef]

Other

F. Lacroix, “Analysis and implementation of a clustered, scalable and misalignment tolerant optical interconnect,” Master’s thesis (McGill University, Montréal, Québec, Canada, 1999).

F. A. P. Tooley, A. Z. Shang, B. Robertson, “Alignment tolerant smart pixels,” in Advanced Applications of Lasers in Materials Processing/Broadband Optical Networks/Enabling Technologies and Applications/Smart Pixels/Optical MEM’s and Their Applications: IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 55–56.

The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, Calif., 1997), p. B1. See www.sematech.org .

International Technology Roadmap for Semiconductor 1998 Update (Semiconductor Industry Association, San Jose, Calif., 1998), p. 4. See www.sematech.org .

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

J. Jahns, “Diffractive optical elements for optical computers,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, Boston, 1994), Chap. 6, pp. 137–167.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1

Schematic diagram of the four-stage system.

Fig. 2
Fig. 2

Flattened layout of the optical system between the modulator and the detector stages.

Fig. 3
Fig. 3

Drawing of an exploded three-dimensional view of backplane. A, optical power supply; B, Risley prisms; C, relay module; D, BCM; E, corner prism; F, OE-VLSI chip module; G, hardened steel rod; H, adjustment screw; and I, baseplate.

Fig. 4
Fig. 4

Diagram of the BCM in a kinematic mount.

Fig. 5
Fig. 5

Diagram of the relay module in a mount.

Fig. 6
Fig. 6

Diagram of the VLSI chip module in a mount.

Fig. 7
Fig. 7

Assembled BCM (scale in millimeters).

Fig. 8
Fig. 8

Assembled relay module (scale in millimeters).

Fig. 9
Fig. 9

Relay diagnostic module.

Fig. 10
Fig. 10

Chip diagnostic module.

Fig. 11
Fig. 11

Assembled system.

Fig. 12
Fig. 12

Close-up of the assembled system.

Fig. 13
Fig. 13

1024 spots at node3.

Fig. 14
Fig. 14

Modulator cluster.

Fig. 15
Fig. 15

Detector cluster.

Fig. 16
Fig. 16

Multiple Gaussian fit of spots at the modulator plane.

Fig. 17
Fig. 17

Multiple Gaussian fit of spots at the detector plane.

Fig. 18
Fig. 18

Total relative power versus spot column and row position at the modulator plane.

Fig. 19
Fig. 19

Total relative power versus spot column and row position at the modulator plane.

Fig. 20
Fig. 20

Schematic diagram of the effect of the PBS angular error.

Fig. 21
Fig. 21

Spots at node2.

Fig. 22
Fig. 22

Cluster at node2.

Fig. 23
Fig. 23

Flattened four-node system in a ring configuration.

Fig. 24
Fig. 24

Eight-node system in a linear configuration.

Fig. 25
Fig. 25

Layout of a BCM.

Tables (1)

Tables Icon

Table 1 Characterization Results for BCM Reflecting Plane

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ=3.52ε,
Δ=3.52ε1+ε2,
f=DPMGnPMG+DQWP1nQWP+DPBSnPBS+DQWP2nQWP+DJPnJP,

Metrics