Abstract

A method and device for measuring glucose concentration in a scattering medium have been developed. A spectral range of 800–1800 nm is considered for wavelength selection because of its deeper penetration into biological tissue and the presence of a glucose absorption band. An algorithm based on selected wavelengths is proposed to minimize interference from other components. The optimal distance between the light source and the detector for diffuse reflectance measurement minimizes the influence of medium scattering. The proposed algorithm and measuring device are tested with a solution containing milk with added glucose. Glucose concentrations between 0 and 2000 mg/dl are determined with a correlation coefficient of 0.977. We also investigate the influence of concentration variations of other substances such as water, hemoglobin, albumin, and cholesterol when they are mixed in a scattering medium.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Robinson, “Blood analysis: noninvasive methods hover on horizon,” in Proceedings of Biophotonics International, May/June 1998 (Laurin, Pittsfield, Mass., 1998), pp. 48–52.
  2. M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
    [PubMed]
  3. U. A. Muller, B. Mertes, C. Fischbacher, K. U. Jageman, K. Danzer, “Noninvasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).
  4. R. Marbach, T. H. Kochinsky, F. A. Gries, H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47, 875–881 (1993).
    [CrossRef]
  5. J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.
  6. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
    [CrossRef] [PubMed]
  7. M. A. Arnold, J. J. Burmeister, G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem. 70, 1773–1781 (1990).
    [CrossRef]
  8. A. K. Amerov, T. V. Lisenko, N. M. Pokrasion, V. L. Strizhevskii, E. G. Sulima, “Determination of blood components by optical reflection spectra,” in International Conference on Holography, Correlation Optics, and Recording Materials, O. V. Angelsky, ed., Proc. SPIE2108, 521–527 (1993).
    [CrossRef]
  9. J. G. Webster, Design of Pulse Oximeter (Institute of Physics, London, 1997), Chaps. 1, 4, and 9.
  10. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  11. T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffuse theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef]
  12. J. S. Maier, S. A. Walker, S. Fantini, A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissue in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
    [CrossRef] [PubMed]
  13. G. Yoon, S. A. Prahl, A. J. Welch, “Accuracy of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250–2255 (1989).
    [CrossRef] [PubMed]
  14. K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).
  15. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
    [CrossRef]
  16. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary condition for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2732 (1994).
    [CrossRef]
  17. S. Fantini, M. A. Francechini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode-based technique,” Appl. Opt. 33, 5204–5213 (1994).
    [CrossRef] [PubMed]
  18. G. Kumar, J. M. Schmitt, “Optical probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36, 2286–2293 (1997).
    [CrossRef] [PubMed]
  19. T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near-infrared wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
    [CrossRef] [PubMed]

2001

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near-infrared wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

1998

K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).

1997

1994

S. Fantini, M. A. Francechini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode-based technique,” Appl. Opt. 33, 5204–5213 (1994).
[CrossRef] [PubMed]

J. S. Maier, S. A. Walker, S. Fantini, A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissue in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary condition for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2732 (1994).
[CrossRef]

1993

1992

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
[PubMed]

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffuse theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

1990

M. A. Arnold, J. J. Burmeister, G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem. 70, 1773–1781 (1990).
[CrossRef]

1989

1973

Amerov, A. K.

A. K. Amerov, T. V. Lisenko, N. M. Pokrasion, V. L. Strizhevskii, E. G. Sulima, “Determination of blood components by optical reflection spectra,” in International Conference on Holography, Correlation Optics, and Recording Materials, O. V. Angelsky, ed., Proc. SPIE2108, 521–527 (1993).
[CrossRef]

Arnold, M. A.

M. A. Arnold, J. J. Burmeister, G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem. 70, 1773–1781 (1990).
[CrossRef]

Barbieri, B.

Berger, M.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Bocker, D.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Bruulsema, J. T.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Burmeister, J. J.

M. A. Arnold, J. J. Burmeister, G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem. 70, 1773–1781 (1990).
[CrossRef]

Cubeddu, R.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Danzer, K.

U. A. Muller, B. Mertes, C. Fischbacher, K. U. Jageman, K. Danzer, “Noninvasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).

Eaton, R. P.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
[PubMed]

Eom, H. S.

K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).

Essenpreis, M.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Fantini, S.

Farrel, T. J.

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffuse theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Farrell, T. J.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Feng, T. C.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary condition for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2732 (1994).
[CrossRef]

Fischbacher, C.

U. A. Muller, B. Mertes, C. Fischbacher, K. U. Jageman, K. Danzer, “Noninvasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).

Fishkin, J. B.

Francechini, M. A.

Franceschini, A.

Gratton, E.

Gries, F. A.

R. Marbach, T. H. Kochinsky, F. A. Gries, H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47, 875–881 (1993).
[CrossRef]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Haaland, D. M.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
[PubMed]

Hale, G. M.

Haskell, R. C.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary condition for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2732 (1994).
[CrossRef]

Hayward, J. E.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Heinemann, L.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Heise, H. M.

Jageman, K. U.

U. A. Muller, B. Mertes, C. Fischbacher, K. U. Jageman, K. Danzer, “Noninvasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).

Jeon, K. J.

K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).

Kim, E.

K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).

Kim, U.

K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).

Kochinsky, T.

Kochinsky, T. H.

Koepp, G. W.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
[PubMed]

Koschinsky, T.

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Kumar, G.

Lee, K. H.

K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).

Lisenko, T. V.

A. K. Amerov, T. V. Lisenko, N. M. Pokrasion, V. L. Strizhevskii, E. G. Sulima, “Determination of blood components by optical reflection spectra,” in International Conference on Holography, Correlation Optics, and Recording Materials, O. V. Angelsky, ed., Proc. SPIE2108, 521–527 (1993).
[CrossRef]

Maier, J. S.

Marbach, R.

McAdams, M. S.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary condition for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2732 (1994).
[CrossRef]

Mertes, B.

U. A. Muller, B. Mertes, C. Fischbacher, K. U. Jageman, K. Danzer, “Noninvasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).

Muller, U. A.

U. A. Muller, B. Mertes, C. Fischbacher, K. U. Jageman, K. Danzer, “Noninvasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).

Musolino, M.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Orskov, H.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Park, S.-H.

K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).

Patterson, M. S.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffuse theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Pifferi, A.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Pokrasion, N. M.

A. K. Amerov, T. V. Lisenko, N. M. Pokrasion, V. L. Strizhevskii, E. G. Sulima, “Determination of blood components by optical reflection spectra,” in International Conference on Holography, Correlation Optics, and Recording Materials, O. V. Angelsky, ed., Proc. SPIE2108, 521–527 (1993).
[CrossRef]

Prahl, S. A.

Querry, M. R.

Robinson, K.

K. Robinson, “Blood analysis: noninvasive methods hover on horizon,” in Proceedings of Biophotonics International, May/June 1998 (Laurin, Pittsfield, Mass., 1998), pp. 48–52.

Robinson, M. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
[PubMed]

Robinson, P. L.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
[PubMed]

Sandahl-Christiansen, J.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Kochinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Schmelzeisen-Redeker, G.

Schmitt, J. M.

Small, G. W.

M. A. Arnold, J. J. Burmeister, G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem. 70, 1773–1781 (1990).
[CrossRef]

Stallard, B. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
[PubMed]

Strizhevskii, V. L.

A. K. Amerov, T. V. Lisenko, N. M. Pokrasion, V. L. Strizhevskii, E. G. Sulima, “Determination of blood components by optical reflection spectra,” in International Conference on Holography, Correlation Optics, and Recording Materials, O. V. Angelsky, ed., Proc. SPIE2108, 521–527 (1993).
[CrossRef]

Sulima, E. G.

A. K. Amerov, T. V. Lisenko, N. M. Pokrasion, V. L. Strizhevskii, E. G. Sulima, “Determination of blood components by optical reflection spectra,” in International Conference on Holography, Correlation Optics, and Recording Materials, O. V. Angelsky, ed., Proc. SPIE2108, 521–527 (1993).
[CrossRef]

Svaasand, L. O.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary condition for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2732 (1994).
[CrossRef]

Taroni, P.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Thennadil, S. N.

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near-infrared wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Thomas, E. V.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
[PubMed]

Tromberg, B. J.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary condition for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2732 (1994).
[CrossRef]

Troy, T. L.

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near-infrared wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Tsay, T. T.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary condition for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2732 (1994).
[CrossRef]

Valentini, G.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Walker, S. A.

Webster, J. G.

J. G. Webster, Design of Pulse Oximeter (Institute of Physics, London, 1997), Chaps. 1, 4, and 9.

Welch, A. J.

Wilson, B. C.

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffuse theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Yoon, G.

K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).

G. Yoon, S. A. Prahl, A. J. Welch, “Accuracy of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt. 28, 2250–2255 (1989).
[CrossRef] [PubMed]

Anal. Chem.

M. A. Arnold, J. J. Burmeister, G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem. 70, 1773–1781 (1990).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Clin. Chem.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
[PubMed]

IEEE J. Quantum Electron.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Int. J. Artif. Organs

U. A. Muller, B. Mertes, C. Fischbacher, K. U. Jageman, K. Danzer, “Noninvasive blood glucose monitoring by means of near infrared spectroscopy: methods for improving the reliability of the calibration models,” Int. J. Artif. Organs 20, 285–290 (1997).

J. Biomed. Opt.

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the near-infrared wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

J. Korean Phys. Soc.

K. J. Jeon, K. H. Lee, U. Kim, S.-H. Park, G. Yoon, H. S. Eom, E. Kim, “Measurement of the optical coefficients of multiple scattering media from time-resolved reflectance spectra,” J. Korean Phys. Soc. 32, 823–827 (1998).

J. Opt. Soc. Am.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary condition for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2732 (1994).
[CrossRef]

Med. Phys.

T. J. Farrel, M. S. Patterson, B. C. Wilson, “A diffuse theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Opt. Lett.

Other

K. Robinson, “Blood analysis: noninvasive methods hover on horizon,” in Proceedings of Biophotonics International, May/June 1998 (Laurin, Pittsfield, Mass., 1998), pp. 48–52.

A. K. Amerov, T. V. Lisenko, N. M. Pokrasion, V. L. Strizhevskii, E. G. Sulima, “Determination of blood components by optical reflection spectra,” in International Conference on Holography, Correlation Optics, and Recording Materials, O. V. Angelsky, ed., Proc. SPIE2108, 521–527 (1993).
[CrossRef]

J. G. Webster, Design of Pulse Oximeter (Institute of Physics, London, 1997), Chaps. 1, 4, and 9.

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Gries, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, D. Bocker, “Detection of changes in blood glucose concentration in vivo with spatially resolved diffuse reflectance,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraka, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1996), pp. 2–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption spectra of glucose in serum.

Fig. 2
Fig. 2

Absorption spectra of glucose, hemoglobin, and albumin in water at a 0.5-mm path length.

Fig. 3
Fig. 3

Experimental setup for measuring the influence of medium scattering on a diffusely reflected spectrum.

Fig. 4
Fig. 4

NIR reflectance spectra for different scattering of the medium in terms of distance between light source and detector. The density of polystyrene beads is controlled to make the media of reduced scattering coefficients 1 and 2 mm-1. The glucose level is maintained at 100 mg/dl.

Fig. 5
Fig. 5

Compact design for four-channel reflectance measurement. The light source has a broadband spectrum from the visible to the NIR, and wavelengths are selected by using the wavelength filters.

Fig. 6
Fig. 6

Prediction of glucose concentration in the 25% water solution of milk with normal fat concentration. A set of three wavelengths D 3 and four wavelengths D 4 are compared.

Fig. 7
Fig. 7

Values of D. The x axis indicates the variation in concentration, and the y axis indicates the D values. The concentration of the blood component varies according to the physiological ranges summarized in Table 1.

Tables (1)

Tables Icon

Table 1 Reference Ranges of Human Blood Components

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D=log 1/T1-log 1/T2i=3nlog 1/Ti-1-n-2log 1/Tn,
Dt=logT1/T2/logT2/T3, Dr=logR1/R2/logR2/R3,
Dt=logT1/T2/log(T2T3/T42, Dr=logR1/R2/logR2R3/R42,
D=A1j-A2j/A2j-A3j.
A1g  A2g, A1g  A3g, A2g  A1j-A2j, A3g  A2j-A3j.
Cg=K0+K1D,
K0=-ε1gl-1A1j-A2j, K1=ε1gl-1A2j-A3j,
D=log R1-log R2/log R2+log R3-2 log R4,
Ri=si/sref-bi/bref/ri/rref-bi/bref.
DCg=DC0g+cg=A01j-A02j+A01g -A02gcg/C0g/A02j-A03j+A02g-A03gcg/C0g=A/B+xgag/B,
Dk=A/Bk+jxjajk/Bk=D0k+jxjdjk,

Metrics