Abstract

In low flow rates, red blood cells (RBCs) fasten together along their axis of symmetry and form a so-called rouleaux. The scattering of He-Ne laser light by a rouleau consisting of n (2 ≤ n ≤ 8) average-sized RBCs is investigated. The interaction problem is treated numerically by means of an advanced axisymmetric boundary element—fast Fourier transform methodology. The scattering problem of one RBC was solved first, and the results showed that the influence of the RBC’s membrane on the scattering patterns is negligible. Thus the rouleau is modeled as an axisymmetric, homogeneous, low-contrast dielectric cylinder, on the surface of which appears, owing to aggregated RBCs, a periodic roughness along the direction of symmetry. The direction of the incident laser light is considered to be perpendicular to the scatterer’s axis of symmetry. The differential scattering cross sections in both perpendicular and parallel scattering planes and for all the scattering angles are calculated and presented in detail.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Copley, “On erythrocyte aggregation and disaggregation,” Clin. Hemorheol. 7, 3–14 (1987).
  2. S. Chen, G. Barshtein, B. Gavish, Y. Mahler, S. Yedgar, “Monitoring of red blood cell aggregability in a flow chamber by computerized image analysis,” Clin. Hemorheol. 14, 497–508 (1994).
  3. A. Gaspar-Rosas, G. B. Thurston, “Erythrocyte aggregate rheology by transmitted and reflected light,” Biorheology 25, 471–487 (1988).
    [PubMed]
  4. M. Donner, M. Siadat, J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25, 367–375 (1998).
  5. G. B. Thurston, “Light transmission through blood in oscillatory flow,” Biorheology 27, 687–700 (1990).
  6. E. Muralidharan, M. Singh, “Influence of diabetes mellitus on the aggregation mechanism as analyzed by He-Ne laser light scattering,” Clin. Hemorheol. 11, 205–216 (1991).
  7. E. Muralidharan, “Simultaneous determination of hematocrit aggregate size and sedimentation velocity by He-Ne laser scattering,” Biorheology 31, 587–599 (1994).
    [PubMed]
  8. E. Muralidharan, N. Tateishi, N. Maeda, “A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics,” Biorheology 31, 277–285 (1994).
    [PubMed]
  9. M. R. Hardeman, P. T. Goedhart, J. G. G. Dobbe, K. P. Lettinga, “Laser-assisted optical rotational) cell analyzer (L.O.R.C.A). I. A new instrument for measurement of various structural hemorheological parameters,” Clin. Hemorheol. 14, 605–618 (1994).
  10. M. Singh, M. Kumaravel, “Influence of jaundice on aggregation process and deferability of erythrocytes,” Clin. Hemorheol. 15, 273–290 (1995).
  11. V. Twersky, “Absorption and multiple scattering by biological suspensions,” J. Opt. Soc. Am. 60, 1084–1093 (1970).
    [CrossRef] [PubMed]
  12. V. S. Lee, L. Tarassenko, “Absorption and multiple scattering by suspensions of aligned red blood cells,” J. Opt. Soc. Am. 8, 1135–1141 (1991).
    [CrossRef]
  13. G. N. Constantinides, D. Gintides, S. E. Kattis, K. Kiriaki, C. A. Paraskeva, A. C. Payatakes, D. Polyzos, S. V. Tsinopoulos, S. N. Yannopoulos, “Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results,” Appl. Opt. 37, 7310–7319 (1998).
    [CrossRef]
  14. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer-Verlag, New York, 1981).
  15. G. J. Streekstra, A. G. Hoekstra, E. J. Nijohof, R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32, 2266–2272 (1993).
    [CrossRef] [PubMed]
  16. A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).
    [CrossRef]
  17. P. Mazeron, S. Muller, “Light scattering by ellipsoids in a physical optics approximation,” Appl. Opt. 35, 3726–3735 (1996).
    [CrossRef] [PubMed]
  18. G. S. Stamatakos, D. Yova, N. K. Uzunoglu, “Integral equation model of light scattering by an oriented monodisperse system of triaxial dielectric ellipsoids: application in ektacytometry,” Appl. Opt. 36, 6503–6512 (1997).
    [CrossRef]
  19. A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38, 230–235 (1999).
    [CrossRef]
  20. P. Mazeron, S. Muller, “Dielectric or absorbing particles: EM surface fields and scattering,” J. Opt. 29, 68–77 (1998).
    [CrossRef]
  21. S. V. Tsinopoulos, D. Polyzos, “Scattering of He-Ne laser light by an average-sized red blood cell,” Appl. Opt. 38, 5499–5510 (1999).
    [CrossRef]
  22. S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “Three dimensional boundary element analysis of electromagnetic wave scattering by penetrable bodies,” Comput. Mech. 21, 306–315 (1998).
    [CrossRef]
  23. S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “An advanced BE/FFT methodology for solving electromagnetic wave scattering problems with axisymmetric dielectric particles,” Eng. Anal. Boundary Elements 23, 155–165 (1999).
    [CrossRef]
  24. R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322–3327 (1985).
    [CrossRef]
  25. M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).
    [CrossRef] [PubMed]
  26. Y. Liu, W. P. Arnott, J. Hallett, “Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact T-matrix results,” Appl. Opt. 37, 5019–5030 (1998).
    [CrossRef]
  27. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  28. R. A. Meyer, “Light scattering from red blood cell ghosts: sensitivity of angular dependent structure to membrane thickness and refractive index,” Appl. Opt. 16, 2036–2038 (1977).
    [CrossRef] [PubMed]

1999

1998

1997

1996

1995

M. Singh, M. Kumaravel, “Influence of jaundice on aggregation process and deferability of erythrocytes,” Clin. Hemorheol. 15, 273–290 (1995).

1994

S. Chen, G. Barshtein, B. Gavish, Y. Mahler, S. Yedgar, “Monitoring of red blood cell aggregability in a flow chamber by computerized image analysis,” Clin. Hemorheol. 14, 497–508 (1994).

E. Muralidharan, “Simultaneous determination of hematocrit aggregate size and sedimentation velocity by He-Ne laser scattering,” Biorheology 31, 587–599 (1994).
[PubMed]

E. Muralidharan, N. Tateishi, N. Maeda, “A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics,” Biorheology 31, 277–285 (1994).
[PubMed]

M. R. Hardeman, P. T. Goedhart, J. G. G. Dobbe, K. P. Lettinga, “Laser-assisted optical rotational) cell analyzer (L.O.R.C.A). I. A new instrument for measurement of various structural hemorheological parameters,” Clin. Hemorheol. 14, 605–618 (1994).

1993

1991

V. S. Lee, L. Tarassenko, “Absorption and multiple scattering by suspensions of aligned red blood cells,” J. Opt. Soc. Am. 8, 1135–1141 (1991).
[CrossRef]

E. Muralidharan, M. Singh, “Influence of diabetes mellitus on the aggregation mechanism as analyzed by He-Ne laser light scattering,” Clin. Hemorheol. 11, 205–216 (1991).

1990

G. B. Thurston, “Light transmission through blood in oscillatory flow,” Biorheology 27, 687–700 (1990).

1988

A. Gaspar-Rosas, G. B. Thurston, “Erythrocyte aggregate rheology by transmitted and reflected light,” Biorheology 25, 471–487 (1988).
[PubMed]

1987

A. L. Copley, “On erythrocyte aggregation and disaggregation,” Clin. Hemorheol. 7, 3–14 (1987).

1985

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322–3327 (1985).
[CrossRef]

1977

1970

Alsholm, P.

Andersson-Engels, S.

Arnott, W. P.

Barshtein, G.

S. Chen, G. Barshtein, B. Gavish, Y. Mahler, S. Yedgar, “Monitoring of red blood cell aggregability in a flow chamber by computerized image analysis,” Clin. Hemorheol. 14, 497–508 (1994).

Chen, S.

S. Chen, G. Barshtein, B. Gavish, Y. Mahler, S. Yedgar, “Monitoring of red blood cell aggregability in a flow chamber by computerized image analysis,” Clin. Hemorheol. 14, 497–508 (1994).

Chernyshev, A. V.

Cohen, A.

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322–3327 (1985).
[CrossRef]

Cohen, L. D.

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322–3327 (1985).
[CrossRef]

Constantinides, G. N.

Copley, A. L.

A. L. Copley, “On erythrocyte aggregation and disaggregation,” Clin. Hemorheol. 7, 3–14 (1987).

Dobbe, J. G. G.

M. R. Hardeman, P. T. Goedhart, J. G. G. Dobbe, K. P. Lettinga, “Laser-assisted optical rotational) cell analyzer (L.O.R.C.A). I. A new instrument for measurement of various structural hemorheological parameters,” Clin. Hemorheol. 14, 605–618 (1994).

Donner, M.

M. Donner, M. Siadat, J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25, 367–375 (1998).

Fung, Y. C.

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer-Verlag, New York, 1981).

Gaspar-Rosas, A.

A. Gaspar-Rosas, G. B. Thurston, “Erythrocyte aggregate rheology by transmitted and reflected light,” Biorheology 25, 471–487 (1988).
[PubMed]

Gavish, B.

S. Chen, G. Barshtein, B. Gavish, Y. Mahler, S. Yedgar, “Monitoring of red blood cell aggregability in a flow chamber by computerized image analysis,” Clin. Hemorheol. 14, 497–508 (1994).

Gintides, D.

Goedhart, P. T.

M. R. Hardeman, P. T. Goedhart, J. G. G. Dobbe, K. P. Lettinga, “Laser-assisted optical rotational) cell analyzer (L.O.R.C.A). I. A new instrument for measurement of various structural hemorheological parameters,” Clin. Hemorheol. 14, 605–618 (1994).

Hallett, J.

Haracz, R. D.

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322–3327 (1985).
[CrossRef]

Hardeman, M. R.

M. R. Hardeman, P. T. Goedhart, J. G. G. Dobbe, K. P. Lettinga, “Laser-assisted optical rotational) cell analyzer (L.O.R.C.A). I. A new instrument for measurement of various structural hemorheological parameters,” Clin. Hemorheol. 14, 605–618 (1994).

Heethaar, R. M.

Hoekstra, A. G.

Karlsson, A.

Kattis, S. E.

S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “An advanced BE/FFT methodology for solving electromagnetic wave scattering problems with axisymmetric dielectric particles,” Eng. Anal. Boundary Elements 23, 155–165 (1999).
[CrossRef]

S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “Three dimensional boundary element analysis of electromagnetic wave scattering by penetrable bodies,” Comput. Mech. 21, 306–315 (1998).
[CrossRef]

G. N. Constantinides, D. Gintides, S. E. Kattis, K. Kiriaki, C. A. Paraskeva, A. C. Payatakes, D. Polyzos, S. V. Tsinopoulos, S. N. Yannopoulos, “Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results,” Appl. Opt. 37, 7310–7319 (1998).
[CrossRef]

Kiriaki, K.

Kumaravel, M.

M. Singh, M. Kumaravel, “Influence of jaundice on aggregation process and deferability of erythrocytes,” Clin. Hemorheol. 15, 273–290 (1995).

Lee, V. S.

V. S. Lee, L. Tarassenko, “Absorption and multiple scattering by suspensions of aligned red blood cells,” J. Opt. Soc. Am. 8, 1135–1141 (1991).
[CrossRef]

Lettinga, K. P.

M. R. Hardeman, P. T. Goedhart, J. G. G. Dobbe, K. P. Lettinga, “Laser-assisted optical rotational) cell analyzer (L.O.R.C.A). I. A new instrument for measurement of various structural hemorheological parameters,” Clin. Hemorheol. 14, 605–618 (1994).

Liu, Y.

Macke, A.

Maeda, N.

E. Muralidharan, N. Tateishi, N. Maeda, “A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics,” Biorheology 31, 277–285 (1994).
[PubMed]

Mahler, Y.

S. Chen, G. Barshtein, B. Gavish, Y. Mahler, S. Yedgar, “Monitoring of red blood cell aggregability in a flow chamber by computerized image analysis,” Clin. Hemorheol. 14, 497–508 (1994).

Maltsev, V. P.

Mazeron, P.

P. Mazeron, S. Muller, “Dielectric or absorbing particles: EM surface fields and scattering,” J. Opt. 29, 68–77 (1998).
[CrossRef]

P. Mazeron, S. Muller, “Light scattering by ellipsoids in a physical optics approximation,” Appl. Opt. 35, 3726–3735 (1996).
[CrossRef] [PubMed]

Meyer, R. A.

Mishchenko, M. I.

Muller, S.

P. Mazeron, S. Muller, “Dielectric or absorbing particles: EM surface fields and scattering,” J. Opt. 29, 68–77 (1998).
[CrossRef]

P. Mazeron, S. Muller, “Light scattering by ellipsoids in a physical optics approximation,” Appl. Opt. 35, 3726–3735 (1996).
[CrossRef] [PubMed]

Muralidharan, E.

E. Muralidharan, “Simultaneous determination of hematocrit aggregate size and sedimentation velocity by He-Ne laser scattering,” Biorheology 31, 587–599 (1994).
[PubMed]

E. Muralidharan, N. Tateishi, N. Maeda, “A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics,” Biorheology 31, 277–285 (1994).
[PubMed]

E. Muralidharan, M. Singh, “Influence of diabetes mellitus on the aggregation mechanism as analyzed by He-Ne laser light scattering,” Clin. Hemorheol. 11, 205–216 (1991).

Nijohof, E. J.

Nilsson, A. M. K.

Paraskeva, C. A.

Payatakes, A. C.

Polyzos, D.

S. V. Tsinopoulos, D. Polyzos, “Scattering of He-Ne laser light by an average-sized red blood cell,” Appl. Opt. 38, 5499–5510 (1999).
[CrossRef]

S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “An advanced BE/FFT methodology for solving electromagnetic wave scattering problems with axisymmetric dielectric particles,” Eng. Anal. Boundary Elements 23, 155–165 (1999).
[CrossRef]

S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “Three dimensional boundary element analysis of electromagnetic wave scattering by penetrable bodies,” Comput. Mech. 21, 306–315 (1998).
[CrossRef]

G. N. Constantinides, D. Gintides, S. E. Kattis, K. Kiriaki, C. A. Paraskeva, A. C. Payatakes, D. Polyzos, S. V. Tsinopoulos, S. N. Yannopoulos, “Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results,” Appl. Opt. 37, 7310–7319 (1998).
[CrossRef]

Shvalov, A. N.

Siadat, M.

M. Donner, M. Siadat, J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25, 367–375 (1998).

Singh, M.

M. Singh, M. Kumaravel, “Influence of jaundice on aggregation process and deferability of erythrocytes,” Clin. Hemorheol. 15, 273–290 (1995).

E. Muralidharan, M. Singh, “Influence of diabetes mellitus on the aggregation mechanism as analyzed by He-Ne laser light scattering,” Clin. Hemorheol. 11, 205–216 (1991).

Soini, E.

Soini, J. T.

Stamatakos, G. S.

Stoltz, J. F.

M. Donner, M. Siadat, J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25, 367–375 (1998).

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Streekstra, G. J.

Tarasov, P. A.

Tarassenko, L.

V. S. Lee, L. Tarassenko, “Absorption and multiple scattering by suspensions of aligned red blood cells,” J. Opt. Soc. Am. 8, 1135–1141 (1991).
[CrossRef]

Tateishi, N.

E. Muralidharan, N. Tateishi, N. Maeda, “A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics,” Biorheology 31, 277–285 (1994).
[PubMed]

Thurston, G. B.

G. B. Thurston, “Light transmission through blood in oscillatory flow,” Biorheology 27, 687–700 (1990).

A. Gaspar-Rosas, G. B. Thurston, “Erythrocyte aggregate rheology by transmitted and reflected light,” Biorheology 25, 471–487 (1988).
[PubMed]

Travis, L. D.

Tsinopoulos, S. V.

S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “An advanced BE/FFT methodology for solving electromagnetic wave scattering problems with axisymmetric dielectric particles,” Eng. Anal. Boundary Elements 23, 155–165 (1999).
[CrossRef]

S. V. Tsinopoulos, D. Polyzos, “Scattering of He-Ne laser light by an average-sized red blood cell,” Appl. Opt. 38, 5499–5510 (1999).
[CrossRef]

S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “Three dimensional boundary element analysis of electromagnetic wave scattering by penetrable bodies,” Comput. Mech. 21, 306–315 (1998).
[CrossRef]

G. N. Constantinides, D. Gintides, S. E. Kattis, K. Kiriaki, C. A. Paraskeva, A. C. Payatakes, D. Polyzos, S. V. Tsinopoulos, S. N. Yannopoulos, “Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results,” Appl. Opt. 37, 7310–7319 (1998).
[CrossRef]

Twersky, V.

Uzunoglu, N. K.

Yannopoulos, S. N.

Yedgar, S.

S. Chen, G. Barshtein, B. Gavish, Y. Mahler, S. Yedgar, “Monitoring of red blood cell aggregability in a flow chamber by computerized image analysis,” Clin. Hemorheol. 14, 497–508 (1994).

Yova, D.

Appl. Opt.

G. N. Constantinides, D. Gintides, S. E. Kattis, K. Kiriaki, C. A. Paraskeva, A. C. Payatakes, D. Polyzos, S. V. Tsinopoulos, S. N. Yannopoulos, “Computation of light scattering by axisymmetric nonspherical particles and comparison with experimental results,” Appl. Opt. 37, 7310–7319 (1998).
[CrossRef]

G. J. Streekstra, A. G. Hoekstra, E. J. Nijohof, R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32, 2266–2272 (1993).
[CrossRef] [PubMed]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).
[CrossRef]

P. Mazeron, S. Muller, “Light scattering by ellipsoids in a physical optics approximation,” Appl. Opt. 35, 3726–3735 (1996).
[CrossRef] [PubMed]

G. S. Stamatakos, D. Yova, N. K. Uzunoglu, “Integral equation model of light scattering by an oriented monodisperse system of triaxial dielectric ellipsoids: application in ektacytometry,” Appl. Opt. 36, 6503–6512 (1997).
[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38, 230–235 (1999).
[CrossRef]

S. V. Tsinopoulos, D. Polyzos, “Scattering of He-Ne laser light by an average-sized red blood cell,” Appl. Opt. 38, 5499–5510 (1999).
[CrossRef]

M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).
[CrossRef] [PubMed]

Y. Liu, W. P. Arnott, J. Hallett, “Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact T-matrix results,” Appl. Opt. 37, 5019–5030 (1998).
[CrossRef]

R. A. Meyer, “Light scattering from red blood cell ghosts: sensitivity of angular dependent structure to membrane thickness and refractive index,” Appl. Opt. 16, 2036–2038 (1977).
[CrossRef] [PubMed]

Biorheology

A. Gaspar-Rosas, G. B. Thurston, “Erythrocyte aggregate rheology by transmitted and reflected light,” Biorheology 25, 471–487 (1988).
[PubMed]

M. Donner, M. Siadat, J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25, 367–375 (1998).

G. B. Thurston, “Light transmission through blood in oscillatory flow,” Biorheology 27, 687–700 (1990).

E. Muralidharan, “Simultaneous determination of hematocrit aggregate size and sedimentation velocity by He-Ne laser scattering,” Biorheology 31, 587–599 (1994).
[PubMed]

E. Muralidharan, N. Tateishi, N. Maeda, “A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics,” Biorheology 31, 277–285 (1994).
[PubMed]

Clin. Hemorheol.

M. R. Hardeman, P. T. Goedhart, J. G. G. Dobbe, K. P. Lettinga, “Laser-assisted optical rotational) cell analyzer (L.O.R.C.A). I. A new instrument for measurement of various structural hemorheological parameters,” Clin. Hemorheol. 14, 605–618 (1994).

M. Singh, M. Kumaravel, “Influence of jaundice on aggregation process and deferability of erythrocytes,” Clin. Hemorheol. 15, 273–290 (1995).

E. Muralidharan, M. Singh, “Influence of diabetes mellitus on the aggregation mechanism as analyzed by He-Ne laser light scattering,” Clin. Hemorheol. 11, 205–216 (1991).

A. L. Copley, “On erythrocyte aggregation and disaggregation,” Clin. Hemorheol. 7, 3–14 (1987).

S. Chen, G. Barshtein, B. Gavish, Y. Mahler, S. Yedgar, “Monitoring of red blood cell aggregability in a flow chamber by computerized image analysis,” Clin. Hemorheol. 14, 497–508 (1994).

Comput. Mech.

S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “Three dimensional boundary element analysis of electromagnetic wave scattering by penetrable bodies,” Comput. Mech. 21, 306–315 (1998).
[CrossRef]

Eng. Anal. Boundary Elements

S. V. Tsinopoulos, S. E. Kattis, D. Polyzos, “An advanced BE/FFT methodology for solving electromagnetic wave scattering problems with axisymmetric dielectric particles,” Eng. Anal. Boundary Elements 23, 155–165 (1999).
[CrossRef]

J. Appl. Phys.

R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322–3327 (1985).
[CrossRef]

J. Opt.

P. Mazeron, S. Muller, “Dielectric or absorbing particles: EM surface fields and scattering,” J. Opt. 29, 68–77 (1998).
[CrossRef]

J. Opt. Soc. Am.

V. Twersky, “Absorption and multiple scattering by biological suspensions,” J. Opt. Soc. Am. 60, 1084–1093 (1970).
[CrossRef] [PubMed]

V. S. Lee, L. Tarassenko, “Absorption and multiple scattering by suspensions of aligned red blood cells,” J. Opt. Soc. Am. 8, 1135–1141 (1991).
[CrossRef]

Other

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer-Verlag, New York, 1981).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Representation of the biconcave RBC model on the ρ-z plane. Angle τ is formed by the X 3 axis and the axis of symmetry z and indicates the orientation of the RBC with respect to the incident wave, which is propagating in the 3 direction with its electric field polarized in the 1 direction.

Fig. 2
Fig. 2

Evaluated DSCS in the (a) parallel and (b) vertical scattering plane for face-on He-Ne laser light illumination of a biconcave-disk-shaped RBC without membrane and with a thin cell membrane plotted versus the scattering angle.

Fig. 3
Fig. 3

As in Fig. 2 for rim-on He-Ne laser light illumination.

Fig. 4
Fig. 4

Representation of a rouleau consisting of eight aggregated RBCs and its orientation with respect to the direction of the incident He-Ne laser light.

Fig. 5
Fig. 5

Bold curve, evaluated DSCS in parallel and perpendicular scattering plane for rim-on He-Ne laser light illumination of a rouleau consisting of two average-sized aggregated RBCs. The light curve corresponds to 2σ D with σ D being the single-RBC DSCS evaluated for rim-on He-Ne laser light illumination.

Fig. 6
Fig. 6

As in Fig. 5 for three aggregated RBCs.

Fig. 7
Fig. 7

As in Fig. 5 for four aggregated RBCs.

Fig. 8
Fig. 8

As in Fig. 5 for five aggregated RBCs.

Fig. 9
Fig. 9

As in Fig. 5 for six aggregated RBCs.

Fig. 10
Fig. 10

As in Fig. 5 for seven aggregated RBCs.

Fig. 11
Fig. 11

As in Fig. 5 for eight aggregated RBCs.

Fig. 12
Fig. 12

Evaluation of the integrated light intensity: (a) positions of the forward and backward detectors; (b) geometry of the detector.

Fig. 13
Fig. 13

Values of scattered energy by eight aggregated and disaggregated RBCs collected by a forward and a backward photodetector.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

c˜x·Ψexx+Sq˜exx,y, ω·Ψ˜exydSy=S φ˜exx, y, ω·TexydSy+UIx,
I˜-c˜x·Ψinx+Sq˜inx,y, ω·Ψ˜inydSy=Sφ˜inx, y, ω·TinydSy,
φ˜x, y, ω=-Gx, y, ωI˜,
q˜x, y, ω=yGx, y, ωnˆ-nˆyGx, y, ω+nˆ·yGx, y, ωI˜,
Ψinx=B˜·ΨexxμexTinx=μinTexxxS,
B˜=I˜-nˆnˆ+ωεexωεin-iσnˆnˆ,
Ψexx-UIx=exp-ikexR-ikexRgθRˆ, kˆ; dˆθˆ+gφRˆ, kˆ; dˆφˆ,R=|y-x| ,
gθRˆ, kˆ; dˆ=kex4πS-kexθˆRˆ-Rˆθˆ:nˆΨexy+iθˆ·TexyexpikexRˆ·ydSy,
gφRˆ, kˆ; dˆ=kex4πS-kexφˆRˆ-Rˆφˆ:nˆΨexy+iφˆ·TexyexpikexRˆ·ydSy,
ab):(cd=a·db·c,
σD=limr R2|Ψexx-UIx|2|UIx|2=|gθRˆ, kˆ; dˆ|2+|gφRˆ, kˆ; dˆ|2kex2.
H(n)exG(n)exH(n)inG˜(n)in·ΨnexTnex=Un10,
zρ=1-ρa21/20.72+4.152ρa2-3.426ρa4,
Cscadet=θγ, τϕγ, τ σDθγ, τ, ϕγ, τ×sinθγ, τdθdϕ,

Metrics