Abstract

A multilayer antiresonance reflecting optical waveguide (ARROW) channel waveguide geometry, believed to be novel, is proposed for enhancing the evanescent field in low-index materials. The finite-difference method is used in the analysis of the structure. The fraction of the fundamental TE-like-mode power in the low-index material (air) is used as a measure of the evanescent field enhancement. The calculated results suggest that the evanescent field of the fundamental TE-like mode can be significantly increased in air while the low modal loss that characterizes the leaky nature of the structure is maintained. The results also suggest that a semivectorial approach to this problem is adequate for analysis of the proposed waveguide structure.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Remley, A. Weisshaar, “Design and analysis of silicon-based antiresonant reflecting optical waveguide chemical sensor,” Opt. Lett. 21, 1241–1243 (1996).
    [CrossRef] [PubMed]
  2. S. Kang, K. Sasaki, H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt. 32, 3544–3549 (1993).
    [CrossRef] [PubMed]
  3. J. F. Govin, A. Doyle, B. D. MacCraith, “Florescence capture by planar waveguide as platform for optical sensors,” Electron. Lett. 34, 685–1687 (1998).
  4. R. Heideman, R. Kooyman, J. Greve, B. Altenburg, “Simple inerferometer for evanescent field refractive index sensing as a feasibility study for immunosensor,” Appl. Opt. 30, 1474–1479 (1991).
    [CrossRef] [PubMed]
  5. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16, 583–592 (1998).
    [CrossRef]
  6. F. A. Muhammad, G. Stewart, W. Jin, “Sensitivity enhancement of D-fiber methane gas sensor using high-index overlay,” IEE Proc. J. 140, 115–118 (1993).
  7. F. Prieto, A. Llobera, D. Jimenez, A. Calle, L. Lechuga, “Design and analysis of silicon antiresonant reflecting optical waveguides for evanescent field sensor,” J. Lightwave Technol. 18, 966–972 (2000).
    [CrossRef]
  8. O. Parriaux, G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors,” J. Lightwave Technol. 16, 573–582 (1998).
    [CrossRef]
  9. G. J. Veldhuis, O. Parriaux, H. J. W. M. Hoekstra, P. V. Lambeck, “Sensitivity enhancement in evanescent optical waveguide sensor,” J. Lightwave Technol. 18, 677–681 (2000).
    [CrossRef]
  10. M. Duguay, Y. Kokubun, T. Kock, “Antiresonant reflecting waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [CrossRef]
  11. W. Jiang, J. Chrostowski, M. Fontaine, “Analysis of ARROW waveguides,” Opt. Commun. 72, 180–186 (1989).
    [CrossRef]
  12. J. Kubica, D. Uttamchandani, B. Culshaw, “Modal propagation within ARROW waveguides” Opt. Commun. 78, 133–136 (1990).
    [CrossRef]
  13. C. Chen, P. Berini, D. Feng, V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides,” in Terahertz and Gigahertz Photonics, R. J. Hwu, K. Wu, eds., Proc. SPIE3795, 676–686 (1999).
    [CrossRef]
  14. P. Lusse, P. Stuwe, J. Schule, H. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–493 (1994).
    [CrossRef]
  15. J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum. Electron. 30, 1250–1253 (1994).
    [CrossRef]
  16. I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–804 (1996).
    [CrossRef]
  17. I. Garces, J. Subia, R. Alonso, “Analysis of the modal solutions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 17, 1566–1574 (1999).
    [CrossRef]
  18. H. A. Jamid, “Frequency-domain PML layer based on the complex mapping of space-boundary condition treatment,” IEEE Microwave Guided Wave Lett. 10, 356–358 (2000).
    [CrossRef]

2000

1999

1998

1996

I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–804 (1996).
[CrossRef]

K. Remley, A. Weisshaar, “Design and analysis of silicon-based antiresonant reflecting optical waveguide chemical sensor,” Opt. Lett. 21, 1241–1243 (1996).
[CrossRef] [PubMed]

1994

P. Lusse, P. Stuwe, J. Schule, H. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–493 (1994).
[CrossRef]

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum. Electron. 30, 1250–1253 (1994).
[CrossRef]

1993

F. A. Muhammad, G. Stewart, W. Jin, “Sensitivity enhancement of D-fiber methane gas sensor using high-index overlay,” IEE Proc. J. 140, 115–118 (1993).

S. Kang, K. Sasaki, H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt. 32, 3544–3549 (1993).
[CrossRef] [PubMed]

1991

1990

J. Kubica, D. Uttamchandani, B. Culshaw, “Modal propagation within ARROW waveguides” Opt. Commun. 78, 133–136 (1990).
[CrossRef]

1989

W. Jiang, J. Chrostowski, M. Fontaine, “Analysis of ARROW waveguides,” Opt. Commun. 72, 180–186 (1989).
[CrossRef]

1986

M. Duguay, Y. Kokubun, T. Kock, “Antiresonant reflecting waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Alonso, R.

Altenburg, B.

Beal, J. C.

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum. Electron. 30, 1250–1253 (1994).
[CrossRef]

Berini, P.

C. Chen, P. Berini, D. Feng, V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides,” in Terahertz and Gigahertz Photonics, R. J. Hwu, K. Wu, eds., Proc. SPIE3795, 676–686 (1999).
[CrossRef]

Calle, A.

Chen, C.

C. Chen, P. Berini, D. Feng, V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides,” in Terahertz and Gigahertz Photonics, R. J. Hwu, K. Wu, eds., Proc. SPIE3795, 676–686 (1999).
[CrossRef]

Chrostowski, J.

W. Jiang, J. Chrostowski, M. Fontaine, “Analysis of ARROW waveguides,” Opt. Commun. 72, 180–186 (1989).
[CrossRef]

Culshaw, B.

J. Kubica, D. Uttamchandani, B. Culshaw, “Modal propagation within ARROW waveguides” Opt. Commun. 78, 133–136 (1990).
[CrossRef]

Dominguez, C.

I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–804 (1996).
[CrossRef]

Doyle, A.

J. F. Govin, A. Doyle, B. D. MacCraith, “Florescence capture by planar waveguide as platform for optical sensors,” Electron. Lett. 34, 685–1687 (1998).

Duguay, M.

M. Duguay, Y. Kokubun, T. Kock, “Antiresonant reflecting waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Fabricius, N.

Feng, D.

C. Chen, P. Berini, D. Feng, V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides,” in Terahertz and Gigahertz Photonics, R. J. Hwu, K. Wu, eds., Proc. SPIE3795, 676–686 (1999).
[CrossRef]

Fontaine, M.

W. Jiang, J. Chrostowski, M. Fontaine, “Analysis of ARROW waveguides,” Opt. Commun. 72, 180–186 (1989).
[CrossRef]

Frenette, N. J. P.

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum. Electron. 30, 1250–1253 (1994).
[CrossRef]

Garces, I.

I. Garces, J. Subia, R. Alonso, “Analysis of the modal solutions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 17, 1566–1574 (1999).
[CrossRef]

I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–804 (1996).
[CrossRef]

Govin, J. F.

J. F. Govin, A. Doyle, B. D. MacCraith, “Florescence capture by planar waveguide as platform for optical sensors,” Electron. Lett. 34, 685–1687 (1998).

Grant, J. C.

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum. Electron. 30, 1250–1253 (1994).
[CrossRef]

Greve, J.

Heideman, R.

Hoekstra, H. J. W. M.

Hollenbach, U.

Ingenhoff, J.

Jamid, H. A.

H. A. Jamid, “Frequency-domain PML layer based on the complex mapping of space-boundary condition treatment,” IEEE Microwave Guided Wave Lett. 10, 356–358 (2000).
[CrossRef]

Jiang, W.

W. Jiang, J. Chrostowski, M. Fontaine, “Analysis of ARROW waveguides,” Opt. Commun. 72, 180–186 (1989).
[CrossRef]

Jimenez, D.

Jin, W.

F. A. Muhammad, G. Stewart, W. Jin, “Sensitivity enhancement of D-fiber methane gas sensor using high-index overlay,” IEE Proc. J. 140, 115–118 (1993).

Kang, S.

Kock, T.

M. Duguay, Y. Kokubun, T. Kock, “Antiresonant reflecting waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. Duguay, Y. Kokubun, T. Kock, “Antiresonant reflecting waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kooyman, R.

Kubica, J.

J. Kubica, D. Uttamchandani, B. Culshaw, “Modal propagation within ARROW waveguides” Opt. Commun. 78, 133–136 (1990).
[CrossRef]

Lambeck, P. V.

Lechuga, L.

Llobera, A.

Luff, B. J.

Lusse, P.

P. Lusse, P. Stuwe, J. Schule, H. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–493 (1994).
[CrossRef]

MacCraith, B. D.

J. F. Govin, A. Doyle, B. D. MacCraith, “Florescence capture by planar waveguide as platform for optical sensors,” Electron. Lett. 34, 685–1687 (1998).

Minamitani, H.

Moreno, M.

I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–804 (1996).
[CrossRef]

Muhammad, F. A.

F. A. Muhammad, G. Stewart, W. Jin, “Sensitivity enhancement of D-fiber methane gas sensor using high-index overlay,” IEE Proc. J. 140, 115–118 (1993).

Parriaux, O.

Piehler, J.

Prieto, F.

Remley, K.

Sasaki, K.

Schule, J.

P. Lusse, P. Stuwe, J. Schule, H. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–493 (1994).
[CrossRef]

Stewart, G.

F. A. Muhammad, G. Stewart, W. Jin, “Sensitivity enhancement of D-fiber methane gas sensor using high-index overlay,” IEE Proc. J. 140, 115–118 (1993).

Stuwe, P.

P. Lusse, P. Stuwe, J. Schule, H. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–493 (1994).
[CrossRef]

Subia, J.

Tzolov, V.

C. Chen, P. Berini, D. Feng, V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides,” in Terahertz and Gigahertz Photonics, R. J. Hwu, K. Wu, eds., Proc. SPIE3795, 676–686 (1999).
[CrossRef]

Unger, H.

P. Lusse, P. Stuwe, J. Schule, H. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–493 (1994).
[CrossRef]

Uttamchandani, D.

J. Kubica, D. Uttamchandani, B. Culshaw, “Modal propagation within ARROW waveguides” Opt. Commun. 78, 133–136 (1990).
[CrossRef]

Valles, J. A.

I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–804 (1996).
[CrossRef]

Veldhuis, G. J.

Villuendas, F.

I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–804 (1996).
[CrossRef]

Weisshaar, A.

Wilkinson, J. S.

Appl. Opt.

Appl. Phys. Lett.

M. Duguay, Y. Kokubun, T. Kock, “Antiresonant reflecting waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Electron. Lett.

J. F. Govin, A. Doyle, B. D. MacCraith, “Florescence capture by planar waveguide as platform for optical sensors,” Electron. Lett. 34, 685–1687 (1998).

IEE Proc. J.

F. A. Muhammad, G. Stewart, W. Jin, “Sensitivity enhancement of D-fiber methane gas sensor using high-index overlay,” IEE Proc. J. 140, 115–118 (1993).

IEEE J. Quantum. Electron.

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum. Electron. 30, 1250–1253 (1994).
[CrossRef]

IEEE Microwave Guided Wave Lett.

H. A. Jamid, “Frequency-domain PML layer based on the complex mapping of space-boundary condition treatment,” IEEE Microwave Guided Wave Lett. 10, 356–358 (2000).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

W. Jiang, J. Chrostowski, M. Fontaine, “Analysis of ARROW waveguides,” Opt. Commun. 72, 180–186 (1989).
[CrossRef]

J. Kubica, D. Uttamchandani, B. Culshaw, “Modal propagation within ARROW waveguides” Opt. Commun. 78, 133–136 (1990).
[CrossRef]

Opt. Lett.

Other

C. Chen, P. Berini, D. Feng, V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides,” in Terahertz and Gigahertz Photonics, R. J. Hwu, K. Wu, eds., Proc. SPIE3795, 676–686 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transverse cross section of the proposed multilayer channel waveguide structure.

Fig. 2
Fig. 2

Variation of the leakage loss of the fundamental TE mode of the slab equivalents of the middle and the outer regions.

Fig. 3
Fig. 3

Variation of the real part of the effective index of the slab equivalent of the middle and the outer regions.

Fig. 4
Fig. 4

Field pattern of the fundamental TE mode of the slab equivalent of the middle region.

Fig. 5
Fig. 5

Major magnetic field pattern of the fundamental TE-like mode of the proposed structure for a core layer width of 0.60 µm.

Fig. 6
Fig. 6

Same as in Fig. 5, for a core layer thickness of 0.11 µm.

Fig. 7
Fig. 7

Variation of the fraction of the fundamental TE-Like modal power in air. The corresponding variation of the real part of the modal effective index is also shown.

Fig. 8
Fig. 8

Leakage loss of the fundamental TE-like mode as a function of core layer thickness.

Fig. 9
Fig. 9

Acquired phase difference of the fundamental TE-like mode as a function of superstrate refractive index.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tm=λ4nm2-neff21/2,
ξ=air|Hy|2n2dxdywindow|Hy|2n2dxdy,

Metrics