Abstract

A pair of thin prisms is used to deviate a light beam without changing the image orientation in a vectorial shearing interferometer. The relative angle between prisms determines the displacement of the wave front and its tilt. The direction of the beam displacement is controlled by means of changing the relative angle between prisms. This system is employed to control the displacement of a sheared wave front as a vector quantity and to introduce a controlled amount of tilt in what we believe is a novel interferometric shearing system. The predicted performance of this wave-front director is confirmed experimentally.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Liepmann, “Wedge plate beam splitter without ghost reflections,” Appl. Opt. 31, 5905–5906 (1992).
    [CrossRef] [PubMed]
  2. F. A. Rosell, “Prism scanner,” J. Opt. Soc. Am. 50, 521–526 (1960).
    [CrossRef]
  3. C. T. Amirault, C. A. DiMarzio, “Precision pointing using a dual-wedge scanner,” Appl. Opt. 24, 1302–1308 (1985).
    [CrossRef] [PubMed]
  4. W. Jenkins, J. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), p. 21.
  5. J. H. Waddell, “Rotating prism design for continuous image compensation cameras,” Appl. Opt. 5, 1211–1223 (1966).
    [CrossRef] [PubMed]
  6. M. S. Scholl, “Signal generated by an extra-solar-system planet detected by a rotating rotationally shearing interferometer,” J. Opt. Soc. Am. A 13, 1584–1592 (1996).
    [CrossRef]
  7. P. Hariharan, “Lateral and radial shearing interferometers: a comparison,” Appl. Opt. 27, 3594–3596 (1988).
    [CrossRef] [PubMed]
  8. J. D. Armitage, A. Lohmann, “Rotary shearing interferometry,” Opt. Acta 12, 185–192 (1965).
    [CrossRef]
  9. J. Schwinder, “Superposition fringe shear interferometer,” Appl. Opt. 19, 4233–4240 (1980).
    [CrossRef]
  10. M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotational-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of OSA Trends in Optics and Photonics series (Optical Society of America, Washington, D.C., 1999), pp. 69–123.
  11. M. V. R. K. Murty, E. C. Hagerott, “Rotational shearing interferometry,” Appl. Opt. 5, 615–620 (1966).
    [CrossRef] [PubMed]
  12. C. Roddier, F. Roddier, J. Demarcq, “Compact rotational shearing interferometer for astronomical applications,” Opt. Eng. 28, 66–70 (1989).
    [CrossRef]
  13. P. Groot, “Novel interferometer based on a wedge prism,” Supplement to Appl. Opt. 34, 8068–8069 (1995).
    [CrossRef]
  14. J. B. Saunders, “Inverting interferometry,” J. Opt. Soc. Am. 45, 133 (1955).
    [CrossRef]
  15. W. H. Steel, “A radial shear interferometer for use with laser source,” Opt. Acta. 17, 721–724 (1970).
    [CrossRef]
  16. G. Paez, M. Strojnik, G. Garcı́a Torales, “Vectorial shearing interferometer,” Appl. Opt. 39, 5172–5178 (2000).
    [CrossRef]
  17. R. S. Sirohi, M. P. Kothiyal, “Double wedge plate shearing interferometer for collimation test,” Appl. Opt. 26, 4054–4055 (1987).
    [CrossRef] [PubMed]
  18. H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
    [CrossRef]
  19. G. Paez, M. Strojnik, “Telescopes,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, eds. (Marcel Dekker, New York, 2001), pp. 207–261.
  20. M. S. Scholl, “Ray trace through a corner cube retroreflector with complex reflection coefficients,” J. Opt. Soc. Am. A 12, 1589–1592 (1995).
    [CrossRef]
  21. M. S. Scholl, “Recursive exact ray trace equations through the foci of the tilted off-axis confocal prolate spheroids,” J. Mod. Opt. 43, 1583–1588 (1996).
    [CrossRef]
  22. M. S. Scholl, “Design parameters for a two-mirror telescope for stray-light sensitive infrared applications,”Infrared Phys. Technol. 37, 251–257 (1996).
    [CrossRef]
  23. M. S. Scholl, G. Paez Padilla, “Using the y, y-bar diagram to control stray light noise in IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
    [CrossRef]
  24. W. Mao, Y. Xu, “Distortion of optical wedges with a large angle of incidence in a collimated beam,” Opt. Eng. 38, 580–585 (1999).
    [CrossRef]
  25. G. Paez, M. Strojnik, “Fringe analysis and phase reconstruction from modulated intensity patterns,” Opt. Lett. 22, 1669–1671 (1997).
    [CrossRef]
  26. G. Paez, M. Strojnik, “Convergent, recursive phase reconstruction from noisy, modulated intensity patterns using synthetic interferograms,” Opt. Lett. 23, 406–408 (1998).
    [CrossRef]
  27. M. S. Scholl, “Spatial and temporal effects due to target irradiation: a study,” Appl. Opt. 21, 1615–1620 (1982).
    [CrossRef] [PubMed]
  28. M. S. Scholl, “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146–2152 (1982).
    [CrossRef] [PubMed]

2000

1999

W. Mao, Y. Xu, “Distortion of optical wedges with a large angle of incidence in a collimated beam,” Opt. Eng. 38, 580–585 (1999).
[CrossRef]

1998

1997

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

M. S. Scholl, G. Paez Padilla, “Using the y, y-bar diagram to control stray light noise in IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
[CrossRef]

G. Paez, M. Strojnik, “Fringe analysis and phase reconstruction from modulated intensity patterns,” Opt. Lett. 22, 1669–1671 (1997).
[CrossRef]

1996

M. S. Scholl, “Signal generated by an extra-solar-system planet detected by a rotating rotationally shearing interferometer,” J. Opt. Soc. Am. A 13, 1584–1592 (1996).
[CrossRef]

M. S. Scholl, “Recursive exact ray trace equations through the foci of the tilted off-axis confocal prolate spheroids,” J. Mod. Opt. 43, 1583–1588 (1996).
[CrossRef]

M. S. Scholl, “Design parameters for a two-mirror telescope for stray-light sensitive infrared applications,”Infrared Phys. Technol. 37, 251–257 (1996).
[CrossRef]

1995

1992

1989

C. Roddier, F. Roddier, J. Demarcq, “Compact rotational shearing interferometer for astronomical applications,” Opt. Eng. 28, 66–70 (1989).
[CrossRef]

1988

1987

1985

1982

1980

1970

W. H. Steel, “A radial shear interferometer for use with laser source,” Opt. Acta. 17, 721–724 (1970).
[CrossRef]

1966

1965

J. D. Armitage, A. Lohmann, “Rotary shearing interferometry,” Opt. Acta 12, 185–192 (1965).
[CrossRef]

1960

1955

Amirault, C. T.

Armitage, J. D.

J. D. Armitage, A. Lohmann, “Rotary shearing interferometry,” Opt. Acta 12, 185–192 (1965).
[CrossRef]

Demarcq, J.

C. Roddier, F. Roddier, J. Demarcq, “Compact rotational shearing interferometer for astronomical applications,” Opt. Eng. 28, 66–70 (1989).
[CrossRef]

DiMarzio, C. A.

Garci´a Torales, G.

Groot, P.

P. Groot, “Novel interferometer based on a wedge prism,” Supplement to Appl. Opt. 34, 8068–8069 (1995).
[CrossRef]

Hagerott, E. C.

Hariharan, P.

Hong, H. M.

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

Huang, H. C.

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

Jenkins, W.

W. Jenkins, J. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), p. 21.

Kao, Y. L.

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

Kothiyal, M. P.

Leung, C. Y.

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

Liau, R. H.

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

Liepmann, T. W.

Lohmann, A.

J. D. Armitage, A. Lohmann, “Rotary shearing interferometry,” Opt. Acta 12, 185–192 (1965).
[CrossRef]

Lu, F. F.

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

Mao, W.

W. Mao, Y. Xu, “Distortion of optical wedges with a large angle of incidence in a collimated beam,” Opt. Eng. 38, 580–585 (1999).
[CrossRef]

Murty, M. V. R. K.

Paez, G.

G. Paez, M. Strojnik, G. Garcı́a Torales, “Vectorial shearing interferometer,” Appl. Opt. 39, 5172–5178 (2000).
[CrossRef]

G. Paez, M. Strojnik, “Convergent, recursive phase reconstruction from noisy, modulated intensity patterns using synthetic interferograms,” Opt. Lett. 23, 406–408 (1998).
[CrossRef]

G. Paez, M. Strojnik, “Fringe analysis and phase reconstruction from modulated intensity patterns,” Opt. Lett. 22, 1669–1671 (1997).
[CrossRef]

G. Paez, M. Strojnik, “Telescopes,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, eds. (Marcel Dekker, New York, 2001), pp. 207–261.

M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotational-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of OSA Trends in Optics and Photonics series (Optical Society of America, Washington, D.C., 1999), pp. 69–123.

Paez Padilla, G.

M. S. Scholl, G. Paez Padilla, “Using the y, y-bar diagram to control stray light noise in IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
[CrossRef]

Roddier, C.

C. Roddier, F. Roddier, J. Demarcq, “Compact rotational shearing interferometer for astronomical applications,” Opt. Eng. 28, 66–70 (1989).
[CrossRef]

Roddier, F.

C. Roddier, F. Roddier, J. Demarcq, “Compact rotational shearing interferometer for astronomical applications,” Opt. Eng. 28, 66–70 (1989).
[CrossRef]

Rosell, F. A.

Saunders, J. B.

Scholl, M. S.

M. S. Scholl, G. Paez Padilla, “Using the y, y-bar diagram to control stray light noise in IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
[CrossRef]

M. S. Scholl, “Recursive exact ray trace equations through the foci of the tilted off-axis confocal prolate spheroids,” J. Mod. Opt. 43, 1583–1588 (1996).
[CrossRef]

M. S. Scholl, “Design parameters for a two-mirror telescope for stray-light sensitive infrared applications,”Infrared Phys. Technol. 37, 251–257 (1996).
[CrossRef]

M. S. Scholl, “Signal generated by an extra-solar-system planet detected by a rotating rotationally shearing interferometer,” J. Opt. Soc. Am. A 13, 1584–1592 (1996).
[CrossRef]

M. S. Scholl, “Ray trace through a corner cube retroreflector with complex reflection coefficients,” J. Opt. Soc. Am. A 12, 1589–1592 (1995).
[CrossRef]

M. S. Scholl, “Spatial and temporal effects due to target irradiation: a study,” Appl. Opt. 21, 1615–1620 (1982).
[CrossRef] [PubMed]

M. S. Scholl, “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146–2152 (1982).
[CrossRef] [PubMed]

Schwinder, J.

Sirohi, R. S.

Steel, W. H.

W. H. Steel, “A radial shear interferometer for use with laser source,” Opt. Acta. 17, 721–724 (1970).
[CrossRef]

Strojnik, M.

G. Paez, M. Strojnik, G. Garcı́a Torales, “Vectorial shearing interferometer,” Appl. Opt. 39, 5172–5178 (2000).
[CrossRef]

G. Paez, M. Strojnik, “Convergent, recursive phase reconstruction from noisy, modulated intensity patterns using synthetic interferograms,” Opt. Lett. 23, 406–408 (1998).
[CrossRef]

G. Paez, M. Strojnik, “Fringe analysis and phase reconstruction from modulated intensity patterns,” Opt. Lett. 22, 1669–1671 (1997).
[CrossRef]

G. Paez, M. Strojnik, “Telescopes,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, eds. (Marcel Dekker, New York, 2001), pp. 207–261.

M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotational-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of OSA Trends in Optics and Photonics series (Optical Society of America, Washington, D.C., 1999), pp. 69–123.

Sun, T. P.

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

Waddell, J. H.

White, J.

W. Jenkins, J. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), p. 21.

Xu, Y.

W. Mao, Y. Xu, “Distortion of optical wedges with a large angle of incidence in a collimated beam,” Opt. Eng. 38, 580–585 (1999).
[CrossRef]

Yang, S. J.

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

Appl. Opt.

Infrared Phys. Technol.

M. S. Scholl, “Design parameters for a two-mirror telescope for stray-light sensitive infrared applications,”Infrared Phys. Technol. 37, 251–257 (1996).
[CrossRef]

M. S. Scholl, G. Paez Padilla, “Using the y, y-bar diagram to control stray light noise in IR systems,” Infrared Phys. Technol. 38, 25–30 (1997).
[CrossRef]

J. Mod. Opt.

M. S. Scholl, “Recursive exact ray trace equations through the foci of the tilted off-axis confocal prolate spheroids,” J. Mod. Opt. 43, 1583–1588 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Acta

J. D. Armitage, A. Lohmann, “Rotary shearing interferometry,” Opt. Acta 12, 185–192 (1965).
[CrossRef]

Opt. Acta.

W. H. Steel, “A radial shear interferometer for use with laser source,” Opt. Acta. 17, 721–724 (1970).
[CrossRef]

Opt. Eng.

C. Roddier, F. Roddier, J. Demarcq, “Compact rotational shearing interferometer for astronomical applications,” Opt. Eng. 28, 66–70 (1989).
[CrossRef]

W. Mao, Y. Xu, “Distortion of optical wedges with a large angle of incidence in a collimated beam,” Opt. Eng. 38, 580–585 (1999).
[CrossRef]

Opt. Laser Eng.

H. M. Hong, C. Y. Leung, H. C. Huang, S. J. Yang, T. P. Sun, Y. L. Kao, R. H. Liau, F. F. Lu, “Real time image linearization in a rotating prism-pair scanning system by using laser-diode encoding techniques,” Opt. Laser Eng. 17, 467–477 (1997).
[CrossRef]

Opt. Lett.

Supplement to Appl. Opt.

P. Groot, “Novel interferometer based on a wedge prism,” Supplement to Appl. Opt. 34, 8068–8069 (1995).
[CrossRef]

Other

M. Strojnik, G. Paez, “Testing the aspherical surfaces with the differential rotational-shearing interferometer,” in Fabrication and Testing of Aspheres, A. Lindquist, M. Piscotty, J. Taylor, eds., Vol. 24 of OSA Trends in Optics and Photonics series (Optical Society of America, Washington, D.C., 1999), pp. 69–123.

G. Paez, M. Strojnik, “Telescopes,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, eds. (Marcel Dekker, New York, 2001), pp. 207–261.

W. Jenkins, J. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), p. 21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Ray incident along the optical axis passing through a pair of wedge prisms from the object to the detection plane. The prism rotations change the ray direction and tilt of the wave front in the detection plane.

Fig. 2
Fig. 2

Single ray passing through the first prism.

Fig. 3
Fig. 3

Second prism rotating for 0°. The ray direction is given by U 44, β4, γ4), the intersection point of the ray with the observation plane is P 5(x 5, y 5, z 5), and the normal to the fourth surface S 4 is N 4(k 4, l 4, m4).

Fig. 4
Fig. 4

Prisms mounted in their rotary holders. The ray intersects the image plane S5 after two prism rotations, ω1 and ω2. The net displacement ρ from the center of the coordinate origin is given by the magnitude of vector ρ; its direction is given by angle θ. The relative angle of rotation between prisms is ω̅ = ω1 - ω2.

Fig. 5
Fig. 5

Risley prisms mounted in their holders.

Fig. 6
Fig. 6

Essential parts of the compact vectorial shearing interferometer with the wave-front director and the optical-path-difference compensator.

Fig. 7
Fig. 7

Experimental setup with a shearing interferometer for testing a positive lens in transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ=γP#12+γp#22+γP#1γP#2 cosω1-ω21/2.
γ=2np-1ε cosω1-ω22.

Metrics