Abstract

We describe an active optical system that both measures and corrects the aberrations introduced when writing three-dimensional bit-oriented optical memory by a two-photon absorption process. The system uses a ferroelectric liquid-crystal spatial light modulator (FLCSLM) configured as an arbitrary wave-front generator that is reconfigurable at speeds as great as 2.5 kHz. A method of aberration measurement by the FLCSLM wave-front generator is described. The same device is also used to correct the induced aberrations by preshaping the wave fronts with the conjugate phase aberration as well as to scan the focal spot in three dimensions. Experimental results show the correction of both on- and off-axis aberrations, allowing the writing of data at depths as great as 1 mm inside a LiNbO3 crystal.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gunter, J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  2. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 21, 2023–2025 (1996).
  3. S. Otaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. Part 1 38, 1744–1749 (1999).
    [CrossRef]
  4. Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
    [CrossRef]
  5. S. Kawata, “Photorefractive optics in three-dimensional digital memory,” Proc. IEEE 87, 2009–2020 (1999).
    [CrossRef]
  6. M. A. A. Neil, M. J. Booth, T. Wilson, “Dynamic wave-front generation for the characterization and testing of optical systems,” Opt. Lett. 23, 1849–1851 (1998).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1975).
  8. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  9. M. A. A. Neil, M. J. Booth, T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17, 1098–1107 (2000).
    [CrossRef]
  10. M. J. Booth, M. A. A. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index mismatched media,” J. Microsc. 192, 90–98 (1998).
    [CrossRef]
  11. M. A. A. Neil, M. J. Booth, T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25, 1083–1085 (2000).
    [CrossRef]
  12. W. H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1978), Chap. 3.
    [CrossRef]
  13. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, Oxford, UK, 1998).
  14. L. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019–6026 (1999).
    [CrossRef]

2000 (2)

1999 (3)

L. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019–6026 (1999).
[CrossRef]

S. Otaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. Part 1 38, 1744–1749 (1999).
[CrossRef]

S. Kawata, “Photorefractive optics in three-dimensional digital memory,” Proc. IEEE 87, 2009–2020 (1999).
[CrossRef]

1998 (3)

1996 (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 21, 2023–2025 (1996).

1976 (1)

A. A. Neil, M.

M. J. Booth, M. A. A. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Bartsch, D. U.

Booth, M. J.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1975).

Fainman, Y.

Freeman, W. R.

Hardy, J. W.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, Oxford, UK, 1998).

Ishitobi, H.

Iwasaki, M.

S. Otaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. Part 1 38, 1744–1749 (1999).
[CrossRef]

Kawata, S.

Kawata, Y.

Lee, W. H.

W. H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1978), Chap. 3.
[CrossRef]

Murao, N.

S. Otaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. Part 1 38, 1744–1749 (1999).
[CrossRef]

Neil, M. A. A.

Noll, R. J.

Ogasawara, M.

S. Otaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. Part 1 38, 1744–1749 (1999).
[CrossRef]

Otaki, S.

S. Otaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. Part 1 38, 1744–1749 (1999).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 21, 2023–2025 (1996).

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 21, 2023–2025 (1996).

Sun, P. C.

Wilson, T.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1975).

Zhu, L.

Appl. Opt. (1)

J. Microsc. (1)

M. J. Booth, M. A. A. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. Part 1 (1)

S. Otaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15-Gbyte optical disk systems,” Jpn. J. Appl. Phys. Part 1 38, 1744–1749 (1999).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

S. Kawata, “Photorefractive optics in three-dimensional digital memory,” Proc. IEEE 87, 2009–2020 (1999).
[CrossRef]

Science (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 21, 2023–2025 (1996).

Other (4)

P. Gunter, J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1975).

W. H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1978), Chap. 3.
[CrossRef]

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, Oxford, UK, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental configuration.

Fig. 2
Fig. 2

Simulated interferograms of wave fronts: (a) wave front for generating the two biased spots for sensing first-order spherical aberration, (b) example correction aberration producing a single spot, (c) wave front for generating the pair of sensor spots with the correction aberration included.

Fig. 3
Fig. 3

Spot patterns produced for a first-order spherical aberration sensor with different input aberrations.

Fig. 4
Fig. 4

Spot image at different stages in the correction cycle: (a) no correction applied (only refocusing), (b) with initial estimate of Z 4,0 followed by refocusing for maximum intensity, (c) fully corrected.

Fig. 5
Fig. 5

Time-averaged exposure of a 5 × 5 array of spots scanned by using the FLCSLM wave-front generator (a) corrected for on-axis aberrations and (b) corrected for off-axis coma.

Fig. 6
Fig. 6

Scanning phase-contrast microscope image of the bit data written near the bottom surface of the 1-mm-thick LiNbO3 crystal. The image dimension is 28 µm × 28 µm.

Fig. 7
Fig. 7

Images of the three-dimensional scan pattern at different axial positions: (a) upper layer, (b) between layers, (c) lower layer.

Fig. 8
Fig. 8

Scanning phase-contrast microscope images of bit data written in two axially offset planes by using the scan pattern shown in Fig. 7. The two planes are 20 µm apart.

Tables (1)

Tables Icon

Table 1 Amounts of Each Zernike Mode Used for Correction of On-Axis Aberrations near the Rear Surface of the LiNbO3 Crystal

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

fx, y=expjϕx, y+τx, y
fx, y=2πexpjϕ+τ+exp-jϕ+τ-13exp3jϕ+τ-13exp-3jϕ+τ+.
ggenx, y=expjΨcfx, y,
goutx, y=2πexpjΨ+Ψc+ϕ+τ+expjΨ+Ψc-ϕ-τ+.

Metrics